The Fundamental Formulas
In this post we will continue our journey of modular equations and derive a host of these mostly by using Lambert series for various theta functions. The following formula (see equation (14) of this post) will be of great help here: ϕ2(−ab)f(a,b)f(−a,−b)=1+2∞∑n=1an+bn1+anbnIt is best to establish some properties of the function f(a,b) here. Let p=ab and then we can write f(a,b)=∞∑n=−∞an(n+1)/2bn(n−1)/2=∞∑n=−∞pn(n+1)/2b−n=∞∑n=−∞pn(n−1)/2an and hence we can write ∞∑n=−∞xn(n+1)/2yn=f(xy,1/y) ∞∑n=−∞xn(n−1)/2yn=f(y,x/y) We now establish the following set of identities (here p=ab and f(q)=(−q;−q)∞):
- n∏k=1f(apk−1,bpn−k)=f(a,b)fn(−pn)f(−p)
- f(a,ab2)f(b,a2b)=f(a,b)ψ(ab)
- f(a,b)+f(−a,−b)=2f(a3b,ab3)
- f(a,b)−f(−a,−b)=2af(b/a,(a/b)a4b4)
- f(a,b)f(−a,−b)=f(−a2,−b2)ϕ(−ab)
- f2(a,b)−f2(−a,−b)=4af(b/a,(a/b)a2b2)ψ(a2b2)
Next we have two conditional identities. If ab=cd then
- f(a,b)f(c,d)+f(−a,−b)f(−c,−d)=2f(ac,bd)f(ad,bc)
- f(a,b)f(c,d)−f(−a,−b)f(−c,−d)=2af(bc,cbabcd)f(bd,dbabcd)
Relation Between Theta Functions of q and q3
Using the above identities we can establish further relations between theta functions of q and q3. Putting a=q,b=−q2 in (1) we get ϕ2(q3)f(q,−q2)f(−q,q2)=1+2∑n=1qn+(−q2)n1+(−q)3n⇒ϕ2(q3)f2(q,−q2)f(q,−q2)f(−q,q2)=1+2∑n=1qn+(−q2)n1+(−q)3n⇒ϕ2(q3)f2(q)f(−q2,−q4)ϕ(q3)=1+2∑n=1qn+(−q2)n1+(−q)3n⇒f2(q)f(−q2)ϕ(q3)=1+2∑n=1qn+(−q2)n1+(−q)3n⇒ϕ(q)ϕ(q3)=1+2∑n=1qn+(−q2)n1+(−q)3n If we sum the series on right by columns (this requires some patience to verify) then we get ϕ(q)ϕ(q3)=1+2(q1−q−q21+q2+q41+q4−q51−q5+⋯) i.e. ϕ(q)ϕ(q3)=1+2∞∑n=0(q6n+11−q6n+1−q6n+21+q6n+2+q6n+41+q6n+4−q6n+51−q6n+5) Again putting a=q,b=q5 in relation (3) we get ∞∑n=0(q6n+11−q12n+2−q6n+51−q12n+10)=qf(−q4,−q8)f(−q2,−q10)ϕ(q6)ψ(q12)=qf(−q4)(q6;q12)∞ψ2(q6)(q2;q12)∞(q6;q12)∞(q10;q12)∞(q12;q12)∞=qf(−q4)(q6;q12)∞(q2;q4)∞(q12;q12)∞ψ2(q6)=q(q4;q4)∞(q6;q12)∞(q2;q4)∞(q12;q12)∞ψ2(q6)=qψ(q2)ψ(q6)ψ2(q6)=qψ(q2)ψ(q6) Thus qψ(q2)ψ(q6)=∞∑n=0(q6n+11−q12n+2−q6n+51−q12n+10) If we replace q by (−q) in (4) and subtract the resulting equation from (4) we immediately see that 4qψ(q2)ψ(q6)=ϕ(q)ϕ(q3)−ϕ(−q)ϕ(−q3)Modular Equation of Degree 3
We can now transcribe this into a modular equation by using transcription formulas from previous post and then we obtain 4e−y⋅12√z(xey)1/412√z1(x1ey1)1/4=√z√z1−√z(1−x)1/4√z1(1−x1)1/4 and on simplification this gives (xx1)1/4+{(1−x)(1−x1)}1/4=1 Putting x=α, x1=β we get the modular equation as (αβ)1/4+{(1−α)(1−β)}1/4=1 In modern notation this is √kl+√k′l′=1 which is the same as the equation derived using Jacobi's transformation of elliptic integrals.Again from equation (4) of current post and equations (7),(8) of the previous post we immediately obtain ϕ3(q)ϕ(q3)+2⋅ϕ3(−q2)ϕ(−q6)=3ϕ(q)ϕ(q3) This can be transcribed to z3/2z1/21+2⋅z3/2(1−x)3/8z1/21(1−x1)1/8=3z1/2z1/21 Ramanujan used the multiplier m=z/z1=K/L and then the above equation simplifies (on putting x=α,x1=β) to 1+2((1−α)31−β)1/8=3m If we replace α by (1−β) and β by (1−α) the multiplier m=K/L changes to L′/K′=3L/K=3/m and hence we get 1+2(β3α)1/8=m From the previous post we have (α3β)1/8−((1−α)31−β)1/8=1=((1−β)31−α)1/8−(β3α)1/8 Hence we have the following relations ((1−α)31−β)1/8=3−m2m,(β3α)1/8=m−12 (α3β)1/8=3+m2m,((1−β)31−α)1/8=m+12 Hence α=(α3β)3/8(β3α)1/8=(3+m)3(m−1)16m3 β=(β3α)3/8(α3β)1/8=(m−1)3(3+m)16m so that m2α−β=(m2−1)⋅3+m2m=(m2−1)(α3β)1/8 and finally we arrive at another form of the modular equation: m2=(α3β)1/8−β(α3β)1/8−α
Modular Equations of Degree 5
From formula (9) of this post we have ϕ2(q)=1+4(q1−q−q31−q3+q51−q5−q71−q7+⋯) and therefore ϕ2(q)−ϕ2(q5)=4(q1−q−q31−q3−q71−q7+q91−q9−q111−q11+q131−q13+q171−q17−q191−q19+⋯)=4(q+q91+q10+q2+q181+q20+q3+q271+q30+⋯)−4(q3+q71+q10+q6+q141+q20+q9+q211+q30+⋯)=2ϕ2(−q10)(f(q,q9)f(−q,−q9)−f(q3,q7)f(−q3,−q7))=2ϕ2(−q10)(f(q,q9)f(−q3,−q7)−f(−q,−q9)f(q3,q7)f(−q,−q9)f(−q3,−q7))=4qϕ2(−q10)f(−q6,−q14)f(−q2,−q18)f(−q,−q9)f(−q3,−q7)=4qf(q,q9)f(q3,q7) In the last line above we used the relation f(a,b)f(−a,b)=ϕ(−ab)f(−a2,−b2) and in the second last line we used conditional identitites for f(a,b).Now f(q,q9)f(q3,q7)=(−q;q10)∞(−q9;q10)∞(−q3;q10)∞(−q7;q10)∞(q10;q10)2∞=(−q;q2)∞(q10;q10)2∞(−q5;q10)∞=χ(q)(q10;q10)2∞(q5;q10)∞(−q10;q10)∞=χ(q)(q20;q20)∞(q5;q5)∞=χ(q)f(−q5)f(−q20) Hence we have the following identity: ϕ2(q)−ϕ2(q5)=4qχ(q)f(−q5)f(−q20) Using transcription formulas with x,y,z associated with q and x1,y1,z1 associated with q5 we get z−z1=4e−y⋅21/6{x(1−x)ey}−1/24×2−1/6√z1(1−x1)1/6(x1ey1)1/24×4−1/3√z1(1−x1)1/24(x1ey1)1/6 i.e. zz1−1=24/3{x1(1−x1)}5/24{x(1−x)}1/24 Switching to α,β,m we get m=1+24/3(β5(1−β)5α(1−α))1/24 Replacing m by 5/m, α by (1−β), β by (1−α) we get another modular equation 5m=1+24/3(α5(1−α)5β(1−β))1/24 Again replacing q by (−q) in (13) and on dividing the resulting equation by equation (13) we get ϕ2(−q)−ϕ2(−q5)ϕ2(q)−ϕ2(q5)=−χ(−q)f(q5)χ(q)f(−q5) Upon transcription the formula reduces to the following modular equation m=1+((1−β)51−α)1/81+{(1−α)3(1−β)}1/8 Replacing m by 5/m, α by (1−β), β by (1−α) we get 5m=1+(α5β)1/81+{αβ3}1/8 To keep the current post to a manageable length, we will postpone the study of a few more modular equations of degree 5 to the next post.
Print/PDF Version
0 comments :: Elementary Approach to Modular Equations: Ramanujan's Theory 6
Post a Comment