The Fundamental Formulas
In this post we will continue our journey of modular equations and derive a host of these mostly by using Lambert series for various theta functions. The following formula (see equation $ (14)$ of this post) will be of great help here: $$\phi^{2}(-ab)\,\frac{f(a, b)}{f(-a, -b)} = 1 + 2\sum_{n = 1}^{\infty}\frac{a^{n} + b^{n}}{1 + a^{n}b^{n}}\tag{1}$$It is best to establish some properties of the function $ f(a, b)$ here. Let $ p = ab$ and then we can write \begin{align}f(a, b) &= \sum_{n = -\infty}^{\infty}a^{n(n + 1)/2}b^{n(n - 1)/2}\notag\\ &= \sum_{n = -\infty}^{\infty}p^{n(n + 1)/2}b^{-n}\notag\\ &= \sum_{n = -\infty}^{\infty}p^{n(n - 1)/2}a^{n}\notag\end{align} and hence we can write $$\sum_{n = -\infty}^{\infty}x^{n(n + 1)/2}y^{n} = f(xy, 1/y)$$ $$\sum_{n = -\infty}^{\infty}x^{n(n - 1)/2}y^{n} = f(y, x/y)$$ We now establish the following set of identities (here $ p = ab$ and $ f(q) = (-q;-q)_{\infty}$):
- $ \displaystyle \prod_{k = 1}^{n}f(ap^{k - 1}, bp^{n - k}) = \frac{f(a, b)f^{n}(-p^{n})}{f(-p)}$
- $ \displaystyle f(a, ab^{2})f(b, a^{2}b) = f(a, b)\psi(ab)$
- $ \displaystyle f(a, b) + f(-a, -b) = 2f(a^{3}b, ab^{3})$
- $ \displaystyle f(a, b) - f(-a, -b) = 2af(b/a, (a/b)a^{4}b^{4})$
- $ \displaystyle f(a, b)f(-a, -b) = f(-a^{2}, -b^{2})\phi(-ab)$
- $ \displaystyle f^{2}(a, b) - f^{2}(-a, -b) = 4af(b/a, (a/b)a^{2}b^{2})\psi(a^{2}b^{2})$
Next we have two conditional identities. If $ ab = cd$ then
- $ \displaystyle f(a, b)f(c, d) + f(-a, -b)f(-c, -d) = 2f(ac, bd)f(ad, bc)$
- $ \displaystyle f(a, b)f(c, d) - f(-a, -b)f(-c, -d) = 2af\left(\frac{b}{c}, \frac{c}{b}abcd\right)f\left(\frac{b}{d}, \frac{d}{b}abcd\right)$
Relation Between Theta Functions of $ q$ and $ q^{3}$
Using the above identities we can establish further relations between theta functions of $ q$ and $ q^{3}$. Putting $ a = q, b = -q^{2}$ in $ (1)$ we get \begin{align}\phi^{2}(q^{3})\frac{f(q, -q^{2})}{f(-q, q^{2})} &= 1 + 2\sum_{n = 1}\frac{q^{n} + (-q^{2})^{n}}{1 + (-q)^{3n}}\notag\\ \Rightarrow \phi^{2}(q^{3})\frac{f^{2}(q, -q^{2})}{f(q, -q^{2})f(-q, q^{2})} &= 1 + 2\sum_{n = 1}\frac{q^{n} + (-q^{2})^{n}}{1 + (-q)^{3n}}\notag\\ \Rightarrow \phi^{2}(q^{3})\frac{f^{2}(q)}{f(-q^{2}, -q^{4})\phi(q^{3})} &= 1 + 2\sum_{n = 1}\frac{q^{n} + (-q^{2})^{n}}{1 + (-q)^{3n}}\notag\\ \Rightarrow \frac{f^{2}(q)}{f(-q^{2})}\phi(q^{3}) &= 1 + 2\sum_{n = 1}\frac{q^{n} + (-q^{2})^{n}}{1 + (-q)^{3n}}\notag\\ \Rightarrow \phi(q)\phi(q^{3}) &= 1 + 2\sum_{n = 1}\frac{q^{n} + (-q^{2})^{n}}{1 + (-q)^{3n}}\notag\end{align} If we sum the series on right by columns (this requires some patience to verify) then we get $$\phi(q)\phi(q^{3}) = 1 + 2\left(\frac{q}{1 - q} - \frac{q^{2}}{1 + q^{2}} + \frac{q^{4}}{1 + q^{4}} - \frac{q^{5}}{1 - q^{5}} + \cdots\right)$$ i.e. $$\phi(q)\phi(q^{3}) = 1 + 2\sum_{n = 0}^{\infty}\left(\frac{q^{6n + 1}}{1 - q^{6n + 1}} - \frac{q^{6n + 2}}{1 + q^{6n + 2}} + \frac{q^{6n + 4}}{1 + q^{6n + 4}} - \frac{q^{6n + 5}}{1 - q^{6n + 5}}\right)\tag{4}$$ Again putting $ a = q, b = q^{5}$ in relation $ (3)$ we get \begin{align} \sum_{n = 0}^{\infty}\left(\frac{q^{6n + 1}}{1 - q^{12n + 2}} - \frac{q^{6n + 5}}{1 - q^{12n + 10}}\right) &= q\frac{f(-q^{4}, -q^{8})}{f(-q^{2}, -q^{10})}\phi(q^{6})\psi(q^{12})\notag\\ &= q\frac{f(-q^{4})(q^{6};q^{12})_{\infty}\psi^{2}(q^{6})}{(q^{2};q^{12})_{\infty}(q^{6};q^{12})_{\infty}(q^{10};q^{12})_{\infty}(q^{12};q^{12})_{\infty}}\notag\\ &= q\frac{f(-q^{4})(q^{6};q^{12})_{\infty}}{(q^{2};q^{4})_{\infty}(q^{12};q^{12})_{\infty}}\psi^{2}(q^{6})\notag\\ &= q\frac{(q^{4};q^{4})_{\infty}(q^{6};q^{12})_{\infty}}{(q^{2};q^{4})_{\infty}(q^{12};q^{12})_{\infty}}\psi^{2}(q^{6})\notag\\ &= q\frac{\psi(q^{2})}{\psi(q^{6})}\psi^{2}(q^{6})\notag\\ &= q\psi(q^{2})\psi(q^{6})\notag\end{align} Thus $$q\psi(q^{2})\psi(q^{6}) = \sum_{n = 0}^{\infty}\left(\frac{q^{6n + 1}}{1 - q^{12n + 2}} - \frac{q^{6n + 5}}{1 - q^{12n + 10}}\right)\tag{5}$$ If we replace $ q$ by $ (-q)$ in $ (4)$ and subtract the resulting equation from $ (4)$ we immediately see that $$4q\psi(q^{2})\psi(q^{6}) = \phi(q)\phi(q^{3}) - \phi(-q)\phi(-q^{3})\tag{6}$$Modular Equation of Degree 3
We can now transcribe this into a modular equation by using transcription formulas from previous post and then we obtain $$4e^{-y}\cdot\frac{1}{2}\sqrt{z}(xe^{y})^{1/4}\frac{1}{2}\sqrt{z_{1}}(x_{1}e^{y_{1}})^{1/4} = \sqrt{z}\sqrt{z_{1}} - \sqrt{z}(1 - x)^{1/4}\sqrt{z_{1}}(1 - x_{1})^{1/4}$$ and on simplification this gives $$(xx_{1})^{1/4} + \{(1 - x)(1 - x_{1})\}^{1/4} = 1$$ Putting $ x = \alpha$, $ x_{1} = \beta$ we get the modular equation as $$(\alpha\beta)^{1/4} + \{(1 - \alpha)(1 - \beta)\}^{1/4} = 1\tag{7}$$ In modern notation this is $$\sqrt{kl} + \sqrt{k'l'} = 1$$ which is the same as the equation derived using Jacobi's transformation of elliptic integrals.Again from equation $ (4)$ of current post and equations $ (7), (8)$ of the previous post we immediately obtain $$\frac{\phi^{3}(q)}{\phi(q^{3})} + 2\cdot\frac{\phi^{3}(-q^{2})}{\phi(-q^{6})} = 3\phi(q)\phi(q^{3})\tag{8}$$ This can be transcribed to $$\frac{z^{3/2}}{z_{1}^{1/2}} + 2\cdot\frac{z^{3/2}(1 - x)^{3/8}}{z_{1}^{1/2}(1 - x_{1})^{1/8}} = 3z^{1/2}z_{1}^{1/2}$$ Ramanujan used the multiplier $ m = z/z_{1} = K/L$ and then the above equation simplifies (on putting $ x = \alpha, x_{1} = \beta$) to $$1 + 2\left(\frac{(1 - \alpha)^{3}}{1 - \beta}\right)^{1/8} = \frac{3}{m}\tag{9}$$ If we replace $ \alpha$ by $ (1 - \beta)$ and $ \beta$ by $ (1 - \alpha)$ the multiplier $ m = K/L$ changes to $ L'/K' = 3L/K = 3/m$ and hence we get $$1 + 2\left(\frac{\beta^{3}}{\alpha}\right)^{1/8} = m\tag{10}$$ From the previous post we have $$\left(\frac{\alpha^{3}}{\beta}\right)^{1/8} - \left(\frac{(1 - \alpha)^{3}}{1 - \beta}\right)^{1/8} = 1 = \left(\frac{(1 -\beta)^{3}}{1 - \alpha}\right)^{1/8} - \left(\frac{\beta^{3}}{\alpha}\right)^{1/8}\tag{11}$$ Hence we have the following relations $$\left(\frac{(1 - \alpha)^{3}}{1 - \beta}\right)^{1/8} = \frac{3 - m}{2m},\,\, \left(\frac{\beta^{3}}{\alpha}\right)^{1/8} = \frac{m - 1}{2}$$ $$\left(\frac{\alpha^{3}}{\beta}\right)^{1/8} = \frac{3 + m}{2m},\,\, \left(\frac{(1 -\beta)^{3}}{1 - \alpha}\right)^{1/8} = \frac{m + 1}{2}$$ Hence $$\alpha = \left(\frac{\alpha^{3}}{\beta}\right)^{3/8}\left(\frac{\beta^{3}}{\alpha}\right)^{1/8} = \frac{(3 + m)^{3}(m - 1)}{16m^{3}}$$ $$\beta = \left(\frac{\beta^{3}}{\alpha}\right)^{3/8}\left(\frac{\alpha^{3}}{\beta}\right)^{1/8} = \frac{(m - 1)^{3}(3 + m)}{16m}$$ so that $$m^{2}\alpha - \beta = (m^{2} - 1)\cdot\frac{3 + m}{2m} = (m^{2} - 1)\left(\frac{\alpha^{3}}{\beta}\right)^{1/8}$$ and finally we arrive at another form of the modular equation: $$m^{2} = \dfrac{\left(\dfrac{\alpha^{3}}{\beta}\right)^{1/8} - \beta}{\left(\dfrac{\alpha^{3}}{\beta}\right)^{1/8} - \alpha}\tag{12}$$
Modular Equations of Degree 5
From formula $ (9)$ of this post we have $$\phi^{2}(q) = 1 + 4\left(\frac{q}{1 - q} - \frac{q^{3}}{1 - q^{3}} + \frac{q^{5}}{1 - q^{5}} - \frac{q^{7}}{1 - q^{7}} + \cdots\right)$$ and therefore \begin{align}\phi^{2}(q) - \phi^{2}(q^{5}) &= 4\left(\frac{q}{1 - q} - \frac{q^{3}}{1 - q^{3}} - \frac{q^{7}}{1 - q^{7}} + \frac{q^{9}}{1 - q^{9}}\right.\notag\\ &\left.\,\,\,\,\,-\, \frac{q^{11}}{1 - q^{11}} + \frac{q^{13}}{1 - q^{13}} + \frac{q^{17}}{1 - q^{17}} - \frac{q^{19}}{1 - q^{19}} + \cdots\right)\notag\\ &= 4\left(\frac{q + q^{9}}{1 + q^{10}} + \frac{q^{2} + q^{18}}{1 + q^{20}} + \frac{q^{3} + q^{27}}{1 + q^{30}} + \cdots\right)\notag\\ &\,\,\,\,\, -\, 4\left(\frac{q^{3} + q^{7}}{1 + q^{10}} + \frac{q^{6} + q^{14}}{1 + q^{20}} + \frac{q^{9} + q^{21}}{1 + q^{30}} + \cdots\right)\notag\\ &= 2\phi^{2}(-q^{10})\left(\frac{f(q, q^{9})}{f(-q, -q^{9})} - \frac{f(q^{3}, q^{7})}{f(-q^{3}, -q^{7})}\right)\notag\\ &= 2\phi^{2}(-q^{10})\left(\frac{f(q, q^{9})f(-q^{3}, -q^{7}) - f(-q, -q^{9})f(q^{3}, q^{7})}{f(-q, -q^{9})f(-q^{3}, -q^{7})}\right)\notag\\ &= 4q\phi^{2}(-q^{10})\frac{f(-q^{6}, -q^{14})f(-q^{2}, -q^{18})}{f(-q, -q^{9})f(-q^{3}, -q^{7})}\notag\\ &= 4qf(q, q^{9})f(q^{3}, q^{7})\notag\end{align} In the last line above we used the relation $ f(a, b)f(-a, b) = \phi(-ab)f(-a^{2}, -b^{2})$ and in the second last line we used conditional identitites for $ f(a, b)$.Now \begin{align} f(q, q^{9})f(q^{3}, q^{7}) &= (-q;q^{10})_{\infty}(-q^{9};q^{10})_{\infty}(-q^{3};q^{10})_{\infty}(-q^{7};q^{10})_{\infty}(q^{10};q^{10})_{\infty}^{2}\notag\\ &= \frac{(-q;q^{2})_{\infty}(q^{10};q^{10})_{\infty}^{2}}{(-q^{5};q^{10})_{\infty}}\notag\\ &= \chi(q)(q^{10};q^{10})_{\infty}^{2}(q^{5};q^{10})_{\infty}(-q^{10};q^{10})_{\infty}\notag\\ &= \chi(q)(q^{20};q^{20})_{\infty}(q^{5};q^{5})_{\infty}\notag\\ &= \chi(q)f(-q^{5})f(-q^{20})\notag\end{align} Hence we have the following identity: $$\phi^{2}(q) - \phi^{2}(q^{5}) = 4q\chi(q)f(-q^{5})f(-q^{20})\tag{13}$$ Using transcription formulas with $ x, y, z$ associated with $ q$ and $ x_{1}, y_{1}, z_{1}$ associated with $ q^{5}$ we get \begin{align} z - z_{1} &= 4e^{-y}\cdot 2^{1/6}\{x(1 - x)e^{y}\}^{-1/24}\notag\\ &\,\,\,\,\,\,\,\times\, 2^{-1/6}\sqrt{z_{1}}(1 - x_{1})^{1/6}(x_{1}e^{y_{1}})^{1/24}\notag\\ &\,\,\,\,\,\,\,\times\, 4^{-1/3}\sqrt{z_{1}}(1 - x_{1})^{1/24}(x_{1}e^{y_{1}})^{1/6}\notag\end{align} i.e. $$\frac{z}{z_{1}} - 1 = 2^{4/3}\frac{\{x_{1}(1 - x_{1})\}^{5/24}}{\{x(1 - x)\}^{1/24}}$$ Switching to $ \alpha, \beta, m$ we get $$m = 1 + 2^{4/3}\left(\frac{\beta^{5}(1 - \beta)^{5}}{\alpha(1 - \alpha)}\right)^{1/24}\tag{14}$$ Replacing $m$ by $5/m$, $\alpha$ by $(1 - \beta)$, $\beta$ by $(1 - \alpha)$ we get another modular equation $$\frac{5}{m} = 1 + 2^{4/3}\left(\frac{\alpha^{5}(1 - \alpha)^{5}}{\beta(1 - \beta)}\right)^{1/24}\tag{15}$$ Again replacing $ q$ by $ (-q)$ in $ (13)$ and on dividing the resulting equation by equation $ (13)$ we get $$\frac{\phi^{2}(-q) - \phi^{2}(-q^{5})}{\phi^{2}(q) - \phi^{2}(q^{5})} = -\frac{\chi(-q)f(q^{5})}{\chi(q)f(-q^{5})}$$ Upon transcription the formula reduces to the following modular equation $$m = \dfrac{1 + \left(\dfrac{(1 - \beta)^{5}}{1 - \alpha}\right)^{1/8}}{1 + \{(1 - \alpha)^{3}(1 - \beta)\}^{1/8}}\tag{16}$$ Replacing $m$ by $5/m$, $\alpha$ by $(1 - \beta)$, $\beta$ by $(1 - \alpha)$ we get $$\frac{5}{m} = \dfrac{1 + \left(\dfrac{\alpha^{5}}{\beta}\right)^{1/8}}{1 + \{\alpha\beta^{3}\}^{1/8}}\tag{17}$$ To keep the current post to a manageable length, we will postpone the study of a few more modular equations of degree $5$ to the next post.
Print/PDF Version
0 comments :: Elementary Approach to Modular Equations: Ramanujan's Theory 6
Post a Comment