Showing posts with label Number Theory. Show all posts
Showing posts with label Number Theory. Show all posts

Playing With Partitions: Euler's Pentagonal Theorem

4 comments
This post was originally written for MSE blog. Please click here to read.

Print/PDF Version

Congruence Properties of Partitions: Part 2

Be the first to leave a comment!
Continuing our journey of partition congruences from the last post we now prove the congruences modulo $7$ and $11$.

Congruence Properties of Partitions: Part 1

Be the first to leave a comment!

Introduction

We know that any positive integer greater than $1$ can be expressed as a product of prime numbers in a unique fashion ignoring the order of factors. This is one of the most basic results in number theory and is aptly called the fundamental theorem of arithmetic. This result also shows that prime numbers are the building blocks for all integers and this justifies the importance given to prime numbers in number theory.