# Elementary Approach to Modular Equations: Ramanujan's Theory 6

By
Paramanand Singh
Wednesday, February 29, 2012

# Elementary Approach to Modular Equations: Ramanujan's Theory 5

### Quintuple Product Identity

We first establish an identity similar to Jacobi's Triple Product which involves five factors and is quite useful in establishing various other identities involving q-series and products. This was first introduced in the mathematical literature by G. N. Watson in order to prove some of Ramanujan's theorems. The quintuple product identity is given by \begin{align}&\prod_{n = 1}^{\infty}(1 - q^{n})(1 - q^{n}z)(1 - q^{n - 1}z^{-1})(1 - q^{2n - 1}z^{2})(1 - q^{2n - 1}z^{-2})\notag\\ &\,\,\,\,\,\,\,\,= \sum_{n = -\infty}^{\infty}q^{n(3n + 1)/2}(z^{3n} - z^{-3n - 1})\notag\end{align}
By
Paramanand Singh
Monday, February 27, 2012

Subscribe to:
Posts
(
Atom
)