# The General Binomial Theorem: Part 2

In the previous post we established the general binomial theorem using Taylor's theorem which uses derivatives in a crucial manner. In this post we present another approach to the general binomial theorem by studying more about the properties of the binomial series itself. Needless to say, this approach requires some basic understanding about infinite series and we will assume that the reader is familiar with ideas of convergence/divergence of an infinite series and some of the tests for convergence of a series.

# The General Binomial Theorem: Part 1

### Introduction

One of most basic algebraic formulas which a student encounters in high school curriculum is the following $$(a + b)^{2} = a^{2} + 2ab + b^{2}$$ and its variant for $(a - b)^{2}$. And after many exercises and problems later one encounters another formula of similar nature namely $$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$ and one wonders if there are similar formulas for higher powers of $(a + b)$.

# Theories of Circular Functions: Part 3

Continuing our journey from last two posts we present some more approaches to the development of the theory of circular functions. One approach is based on the use of infinite series and requires basic knowledge of theory of infinite series. This approach is particularly well suited for treating circular functions as functions of a complex variable, but we will limit ourselves to the case of real variables only.