In the last post we saw that using a trigonometric identity Ramanujan was able to express the functions S_{2n - 1}(x) or equivalently \Phi_{0, 2n - 1}(x) in terms of simpler functions P(x), Q(x), R(x). Continuing our journey further we start with the equation:
\begin{align}&\left(\frac{1}{4}\cot\frac{\theta}{2} + \frac{x\sin\theta}{1 - x} + \frac{x^{2}\sin 2\theta}{1 - x^{2}} + \frac{x^{3}\sin 3\theta}{1 - x^{3}} + \cdots\right)^{2}\notag\\
&\,\,\,\,= \left(\frac{1}{4}\cot\frac{\theta}{2}\right)^{2} + \frac{x\cos\theta}{(1 - x)^{2}} + \frac{x^{2}\cos 2\theta}{(1 - x^{2})^{2}} + \frac{x^{3}\cos 3\theta}{(1 - x^{3})^{2}} + \cdots\notag\\
&\,\,\,\,+\frac{1}{2}\left\{\frac{x(1 - \cos\theta)}{1 - x} + \frac{2x^{2}(1 - \cos 2\theta)}{1 - x^{2}} + \frac{3x^{3}(1 - \cos 3\theta)}{1 - x^{3}} + \cdots\right\}\tag{1}\end{align}
which was established in the last post.
We show one calculation for \Phi_{2, 3}(x). Clearly from (9) we have \begin{align} \Phi_{2, 3}(x) &= \left(x\frac{d}{dx}\right)^{2}\Phi_{0, 1}(x)\notag\\ &= x\frac{d}{dx}\Phi_{1, 2}(x)\notag\\ &= x\frac{d}{dx}\left(\frac{Q - P^{2}}{288}\right)\notag\\ &= \frac{x}{288}\left(\frac{dQ}{dx} - 2P\frac{dP}{dx}\right)\notag\\ &= \frac{1}{288}\left(\frac{PQ - R}{3} - \frac{P^{3} - PQ}{6}\right)\notag\\ &= \frac{3PQ - 2R - P^{3}}{1728}\notag\end{align} Using equations (6), (7), (8) we can see that \begin{align}x\frac{d}{dx}(Q^{3} - R^{2}) &= 3Q^{2}x\frac{dQ}{dx} - 2Rx\frac{dR}{dx}\notag\\ &= 3Q^{2}\frac{PQ - R}{3} - 2R\frac{PR - Q^{2}}{2}\notag\\ &= PQ^{3} - RQ^{2} - PR^{2} + RQ^{2}\notag\\ &= P(Q^{3} - R^{2})\notag\end{align} and hence it follows that x\frac{d}{dx}\{\log(Q^{3} - R^{2})\} = P\tag{10} Aagain if we note the definition of eta function \eta(x) given by \eta(x) = x^{1/24}(1 - x)(1 - x^{2})(1 - x^{3})(1 - x^{4})\cdots it is clear that P = 24x\frac{d}{dx}\{\log(\eta(x))\} or P = x\frac{d}{dx}\{\log(\eta^{24}(x))\}\tag{11} From (10), (11) it follows that we must have Q^{3} - R^{2} = A\eta^{24}(x) where A is some constant. Since we have Q = 1 + 240x + \cdots,\,\, R = 1 - 504x + \cdots it follows that Q^{3} - R^{2} = (3\cdot 240 + 2\cdot 504)x + \cdots = 1728x + \cdots and therefore the constant A must be 1728.
We finally arrive at the beautiful identity: Q^{3} - R^{2} = 1728x\{(1 - x)(1 - x^{2})(1 - x^{3})\cdots\}^{24}\tag{12}
Similarly from (26) we get: 11\sigma_{9}(n) = \{21\sigma_{5}(n) - 10\sigma_{3}(n)\} + 5040\sum_{i = 1}^{n - 1}\sigma_{3}(i)\sigma_{5}(n - i) and thus 11\sigma_{9}(n) + 10\sigma_{3}(n) - 21\sigma_{5}(n) is divisible by 5040.
From (25) and (28) we get 1 - 24\sum_{n = 1}^{\infty}\sigma_{13}(n)x^{n} = \left(1 + 480\sum_{n = 1}^{\infty}\sigma_{7}(n)x^{n}\right)\left(1 - 504\sum_{n = 1}^{\infty}\sigma_{5}(n)x^{n}\right) and thus on equating coefficients of x^{n} we get \sigma_{13}(n) = \{21\sigma_{5}(n) - 20\sigma_{7}(n)\} + 10080\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{7}(n - i) We can rewrite the equation (27) as 691 + 65520\Phi_{0, 11}(x) = 441(Q^{3} - R^{2}) + 691R^{2} so that 691 + 65520\Phi_{0, 11}(x) = 441\cdot 1728\eta^{24}(x) + 691R^{2}\tag{29} Let us define Ramanujan's Tau function \tau(n) by \sum_{n = 1}^{\infty}\tau(n)x^{n} = \eta^{24}(x) = x\prod_{n = 1}^{\infty}(1 - x^{n})^{24} and then equating coefficients of x^{n} in (29) we get \begin{align}65520\sigma_{11}(n) &= 441\cdot 1728\tau(n) - 691\cdot 1008\sigma_{5}(n)\notag\\ &\,\,\,\,+ 691\cdot 504^{2}\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{5}(n - i)\notag\\ \Rightarrow 65\sigma_{11}(n) &= 756\tau(n) - 691\sigma_{5}(n) + 691\cdot 252\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{5}(n - i)\notag\\ \Rightarrow 65(\sigma_{11}(n) - \tau(n)) &= 691\tau(n) - 691\sigma_{5}(n) + 691\cdot 252\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{5}(n - i)\notag\end{align} and thus we arrive at the famous congruence satisfied by \tau(n) \tau(n) \equiv \sigma_{11}(n) \pmod{691}\tag{30}
Print/PDF Version
Expression of \Phi_{1, 2n}(x) in terms of P, Q, R
Using the above identity we will now express the functions \Phi_{1, 2n}(x) in terms of P, Q, R. To do so we need to express both the LHS and RHS of (1) in series of powers of \theta. From the last post we can see that \begin{align}\frac{1}{4}\cot\frac{\theta}{2} &= \frac{1}{2\theta} - \frac{B_{2}}{2\cdot 2}\cdot\frac{\theta}{1!} + \frac{B_{4}}{2\cdot 4}\cdot\frac{\theta^{3}}{3!} - \cdots\notag\\ &= \frac{1}{2\theta} + E_{1}\frac{\theta}{1!} - E_{3}\frac{\theta^{3}}{3!} + E_{5}\frac{\theta^{5}}{5!} - \cdots\notag\\ \frac{x^{m}}{1 - x^{m}}\sin m\theta &= \frac{x^{m}}{1 - x^{m}}\left(m\theta - \frac{m^{3}\theta^{3}}{3!} + \frac{m^{5}\theta^{5}}{5!} - \cdots\right)\notag\end{align} and therefore the LHS of (1) can be written as: \left(\frac{1}{2\theta} + \frac{\theta}{1!}S_{1}(x) - \frac{\theta^{3}}{3!}S_{3}(x) + \frac{\theta^{5}}{5!}S_{5}(x) - \cdots\right)^{2} For the RHS of (1) we can see that \begin{align}\left(\frac{1}{4}\cot\frac{\theta}{2}\right)^{2} &= \frac{1}{16}\cot^{2}\frac{\theta}{2}\notag\\ &= \frac{1}{4\theta^{2}} - \frac{1}{24} + \frac{1}{2}\left(-\frac{B_{4}}{2\cdot 4}\frac{\theta^{2}}{2!} + \frac{B_{6}}{2\cdot 6}\frac{\theta^{4}}{4!} - \frac{B_{8}}{2\cdot 8}\frac{\theta^{6}}{6!} + \cdots\right)\notag\\ &= \frac{1}{4\theta^{2}} + E_{1} + \frac{1}{2}\left(E_{3}\frac{\theta^{2}}{2!} - E_{5}\frac{\theta^{4}}{4!} + \cdots\right)\notag\end{align} and \begin{align}\frac{mx^{m}(1 - \cos m\theta)}{1 - x^{m}} &= \frac{mx^{m}}{1 - x^{m}}\left(\frac{m^{2}\theta^{2}}{2!} - \frac{m^{4}\theta^{4}}{4!} + \cdots\right)\notag\\ \frac{x^{m}\cos m\theta}{(1 - x^{m})^{2}} &= \frac{x^{m}}{(1 - x^{m})^{2}}\left(1 - \frac{m^{2}\theta^{2}}{2!} + \frac{m^{4}\theta^{4}}{4!} - \cdots \right)\notag\end{align} Noting that \begin{align}\sum_{m = 1}^{\infty}\frac{m^{r}x^{m}}{(1 - x^{m})^{2}} &= \sum_{m = 1}^{\infty}m^{r}x^{m}\sum_{n = 1}^{\infty}nx^{mn - m}\notag\\ &= \sum_{m = 1}^{\infty}\sum_{n = 1}^{\infty}m^{r}nx^{mn} = \Phi_{1, r}(x)\notag\end{align} the RHS of equation (1) can be written as: \begin{align}\frac{1}{4\theta^{2}} &+ E_{1} + \Phi_{1, 0}(x) - \frac{\theta^{2}}{2!}\Phi_{1, 2}(x) + \frac{\theta^{4}}{4!}\Phi_{1, 4}(x) - \frac{\theta^{6}}{6!}\Phi_{1, 6}(x) + \cdots\notag\\ &+ \frac{1}{2}\left(\frac{\theta^{2}}{2!}S_{3}(x) - \frac{\theta^{4}}{4!}S_{5}(x) + \cdots\right)\notag\end{align} Thus the equation (1) is transformed into: \begin{align}&\left(\frac{1}{2\theta} + \frac{\theta}{1!}S_{1}(x) - \frac{\theta^{3}}{3!}S_{3}(x) + \frac{\theta^{5}}{5!}S_{5}(x) - \cdots\right)^{2}\notag\\ &\,\,\,\,\,\,\,\,=\frac{1}{4\theta^{2}} + S_{1}(x) - \frac{\theta^{2}}{2!}\Phi_{1, 2}(x) + \frac{\theta^{4}}{4!}\Phi_{1, 4}(x) - \frac{\theta^{6}}{6!}\Phi_{1, 6}(x) + \cdots\notag\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+ \frac{1}{2}\left(\frac{\theta^{2}}{2!}S_{3}(x) - \frac{\theta^{4}}{4!}S_{5}(x) + \cdots\right)\notag\end{align} For even positive interger n if we equate the coefficients of \theta^{n} on both sides of the above equation we get: \begin{align}\frac{n + 3}{2(n + 1)}S_{n + 1}(x) - \Phi_{1, n}(x) &= \binom{n}{1}S_{1}(x)S_{n - 1}(x)\notag\\ &+ \binom{n}{3}S_{3}(x)S_{n - 3}(x) + \cdots\notag\\ &+ \binom{n}{n - 1}S_{n - 1}(x)S_{1}(x)\tag{2}\end{align} Putting n = 2 we get \begin{align}\frac{5}{6}S_{3}(x) - \Phi_{1, 2}(x) &= 2S_{1}^{2}(x)\notag\\ \Rightarrow \frac{5}{6}\frac{Q}{240} - \Phi_{1, 2}(x) &= 2\left(\frac{-P}{24}\right)^{2}\notag\end{align} or 288\Phi_{1, 2}(x) = Q - P^{2}\tag{3} Similarly with n = 4, 6 we get \begin{align}720\Phi_{1, 4}(x) &= PQ - R\tag{4}\\ 1008\Phi_{1, 6}(x) &= Q^{2} - PR\tag{5}\end{align} Now that we have expressed \Phi_{1, 2n}(x) in terms of P, Q, R we proceed to handle the case for general \Phi_{r, s}(x).Expression of \Phi_{r, s}(x) in terms of P, Q, R
We know that P = 1 - 24\Phi_{1, 0}(x) = 1 - 24\sum_{n = 1}^{\infty}\sigma_{1}(n)x^{n} and therefore x\frac{dP}{dx} = -24\sum_{n = 1}^{\infty}n\sigma_{1}(n)x^{n} = -24\Phi_{1, 2}(x) and using (3) we get x\frac{dP}{dx} = \frac{P^{2} - Q}{12}\tag{6} Similarly we obtain: \begin{align}x\frac{dQ}{dx} &= \frac{PQ - R}{3}\tag{7}\\ x\frac{dR}{dx} &= \frac{PR - Q^{2}}{2}\tag{8}\end{align} Again it is easy to verify (via repeated differentiation) that \Phi_{r, s}(x) = \left(x\frac{d}{dx}\right)^{r}\Phi_{0, s - r}(x)\tag{9} If s - r is odd (i.e. r and s are of different parity) then \Phi_{0, s - r}(x) can be expressed as a polynomial in P, Q, R and thereby using (6), (7), (8) we can see from the above equation that \Phi_{r, s}(x) can be expressed as a polynomial in P, Q, R.We show one calculation for \Phi_{2, 3}(x). Clearly from (9) we have \begin{align} \Phi_{2, 3}(x) &= \left(x\frac{d}{dx}\right)^{2}\Phi_{0, 1}(x)\notag\\ &= x\frac{d}{dx}\Phi_{1, 2}(x)\notag\\ &= x\frac{d}{dx}\left(\frac{Q - P^{2}}{288}\right)\notag\\ &= \frac{x}{288}\left(\frac{dQ}{dx} - 2P\frac{dP}{dx}\right)\notag\\ &= \frac{1}{288}\left(\frac{PQ - R}{3} - \frac{P^{3} - PQ}{6}\right)\notag\\ &= \frac{3PQ - 2R - P^{3}}{1728}\notag\end{align} Using equations (6), (7), (8) we can see that \begin{align}x\frac{d}{dx}(Q^{3} - R^{2}) &= 3Q^{2}x\frac{dQ}{dx} - 2Rx\frac{dR}{dx}\notag\\ &= 3Q^{2}\frac{PQ - R}{3} - 2R\frac{PR - Q^{2}}{2}\notag\\ &= PQ^{3} - RQ^{2} - PR^{2} + RQ^{2}\notag\\ &= P(Q^{3} - R^{2})\notag\end{align} and hence it follows that x\frac{d}{dx}\{\log(Q^{3} - R^{2})\} = P\tag{10} Aagain if we note the definition of eta function \eta(x) given by \eta(x) = x^{1/24}(1 - x)(1 - x^{2})(1 - x^{3})(1 - x^{4})\cdots it is clear that P = 24x\frac{d}{dx}\{\log(\eta(x))\} or P = x\frac{d}{dx}\{\log(\eta^{24}(x))\}\tag{11} From (10), (11) it follows that we must have Q^{3} - R^{2} = A\eta^{24}(x) where A is some constant. Since we have Q = 1 + 240x + \cdots,\,\, R = 1 - 504x + \cdots it follows that Q^{3} - R^{2} = (3\cdot 240 + 2\cdot 504)x + \cdots = 1728x + \cdots and therefore the constant A must be 1728.
We finally arrive at the beautiful identity: Q^{3} - R^{2} = 1728x\{(1 - x)(1 - x^{2})(1 - x^{3})\cdots\}^{24}\tag{12}
Relation of P, Q, R with Elliptic Integrals K, E
Using the differential equations (6), (7), (8) we can deduce many further properties of P, Q, R. Here we will establish their link with the elliptic integrals K, E and modulus k. We know that \frac{dK}{dk} = \frac{E - k'^{2}K}{kk'^{2}},\,\,\frac{dE}{dk} = \frac{E - K}{k} Eliminating E from the above relations we get kk'^{2}\frac{d^{2}K}{dk^{2}} + (1 - 3k^{2})\frac{dK}{dk} - kK = 0\tag{13} Now if we set x = q^{2} we find that \begin{align} P(q^{2}) &= 12q\frac{d}{dq}[\log\{q^{1/12}(1 - q^{2})(1 - q^{4})(1 - q^{6})\cdots\}]\notag\\ &= 12q\frac{dk}{dq}\frac{d}{dk}\left\{\log\left(2^{-1/3}\sqrt{\frac{2K}{\pi}}(kk')^{1/6}\right)\right\}\notag\\ &= \frac{24kk'^{2}K^{2}}{\pi^{2}}\left\{\frac{1}{2K}\frac{dK}{dk} + \frac{1}{6k} - \frac{k}{6k'^{2}}\right\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left\{\frac{3kk'^{2}}{K}\cdot\frac{E - k'^{2}K}{kk'^{2}} + k'^{2} - k^{2}\right\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left\{\frac{3E}{K} + k^{2} - 2\right\}\tag{14}\end{align} From (6) and (14)we see that \begin{align}q\frac{dP(q^{2})}{dq} &= \frac{P^{2}(q^{2}) - Q(q^{2})}{6}\notag\\ \Rightarrow Q(q^{2}) &= P^{2}(q^{2}) - 6q\frac{dP(q^{2})}{dq}\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\left\{\frac{3E}{K} + k^{2} - 2\right\}^{2} - 6q\frac{dk}{dq}\frac{d}{dk}\{P(q^{2})\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\left[\left\{\frac{3kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right\}^{2} \right. \notag\\ &\,\,\,\,- \left. \frac{3kk'^{2}}{K^{2}}\frac{d}{dk}\left\{3kk'^{2}K\frac{dK}{dk} + K^{2}(1 - 2k^{2})\right\}\right]\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\left[\left\{\frac{3kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right\}^{2}\right. \notag\\ &\,\,\,\,- \frac{3kk'^{2}}{K^{2}}\left\{3kk'^{2}\left(K\frac{d^{2}K}{dk^{2}} + \left(\frac{dK}{dk}\right)^{2}\right)\right.\notag\\ &\,\,\,\,+ \left. \left. K\frac{dK}{dk}(5 - 13k^{2}) - 4kK^{2}\right\}\right]\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\left[\left\{\frac{3kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right\}^{2}\right. \notag\\ &\,\,\,\,- \frac{9k^{2}k'^{4}}{K}\frac{d^{2}K}{dk^{2}} - \frac{9k^{2}k'^{4}}{K^{2}}\left(\frac{dK}{dk}\right)^{2}\notag\\ &\,\,\,\,- \left. \frac{3kk'^{2}}{K}(5 - 13k^{2})\frac{dK}{dk} + 12k^{2}k'^{2}\right]\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\left\{-\frac{9k^{2}k'^{4}}{K}\frac{d^{2}K}{dk^{2}}\right.\notag\\ &\,\,\,\,+ \left. \frac{9kk'^{2}}{K}(3k^{2} - 1)\frac{dK}{dk} + (1 - 2k^{2})^{2} + 12k^{2}k'^{2}\right\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\left\{-\frac{9kk'^{2}}{K}\left(kk'^{2}\frac{d^{2}K}{dk^{2}} + (1 - 3k^{2})\frac{dK}{dk} - kK\right)\right.\notag\\ &\,\,\,\,+ \left. 1 - 4k^{2} + 4k^{4} + 3k^{2} - 3k^{4}\right\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}(1 - k^{2} + k^{4})\tag{15}\end{align} Similarly using(7), (14), (15) we get \begin{align} R(q^{2}) &= P(q^{2})Q(q^{2}) - \frac{3q}{2}\frac{dQ(q^{2})}{dq}\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}\left\{\frac{3kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right\}\{1 - k^{2}k'^{2}\}\notag\\ &\,\,\,\,- \frac{3kk'^{2}K^{2}}{\pi^{2}}\frac{d}{dk}\left\{\left(\frac{2K}{\pi}\right)^{4}\{1 - k^{2}k'^{2}\}\right\}\notag\\ &=\left(\frac{2K}{\pi}\right)^{6}\left[\left\{\frac{3kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right\}\{1 - k^{2}k'^{2}\}\right.\notag\\ &\,\,\,\,- \left.\frac{3kk'^{2}}{4K^{4}}\frac{d}{dk}\left\{K^{4}\{1 - k^{2}k'^{2}\}\right\}\right]\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}\left[\left\{\frac{3kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right\}\{1 - k^{2}k'^{2}\}\right.\notag\\ &\,\,\,\,- \left.\frac{3kk'^{2}}{4K^{4}}\left\{K^{4}(4k^{3} - 2k) + 4K^{3}\frac{dK}{dk}(1 - k^{2}k'^{2})\right\}\right]\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}\left[\left\{\frac{3kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right\}\{1 - k^{2}k'^{2}\}\right.\notag\\ &\,\,\,\,+ \left.\frac{3k^{2}k'^{2}}{2}(1 - 2k^{2}) -\frac{3kk'^{2}}{K}\frac{dK}{dk}(1 - k^{2}k'^{2})\right]\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}(1 - 2k^{2})\left(1 + \frac{k^{2}k'^{2}}{2}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}(1 + k^{2})(1 - 2k^{2})\left(1 - \frac{k^{2}}{2}\right)\tag{16}\end{align} Going further we can replace q^{2} by q in (15), (16) and note that this leads to replacing K by (1 + k)K and k by 2\sqrt{k}/(1 + k) (see Landen's Transformation of second order). When this is done we get: \begin{align} Q(q) &= \left(\frac{2(1 + k)K}{\pi}\right)^{4}\left(1 - \frac{4k}{(1 + k)^{2}} + \frac{16k^{2}}{(1 + k)^{4}}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\{(1 + k)^{4} - 4k(1 + k)^{2} + 16k^{2}\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\{(1 + k)^{2}(1 - k)^{2} + 16k^{2}\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}(1 + 14k^{2} + k^{4})\tag{17}\end{align} and \begin{align} R(q) &= \left(\frac{2(1 + k)K}{\pi}\right)^{6}\left(1 + \frac{4k}{(1 + k)^{2}}\right)\notag\\ &\,\,\,\,\,\,\,\,\left(1 - \frac{8k}{(1 + k)^{2}}\right)\left(1 - \frac{2k}{(1 + k)^{2}}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}\left\{(1 + k^{2} + 6k)(1 + k^{2} - 6k)(1 + k^{2})\right\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}\left\{((1 + k^{2})^{2} - 36k^{2})(1 + k^{2})\right\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}(1 + k^{2})(1 - 34k^{2} + k^{4})\tag{18}\end{align} To get P(q) we need to first see how \eta(q^{2}) transforms when q^{2} is replaced by q. Clearly we have \eta(q^{2}) = q^{1/12}(1 - q^{2})(1 - q^{4})(1 - q^{6})\cdots = 2^{-1/3}\sqrt{\frac{2K}{\pi}}(kk')^{1/6} so that \begin{align}\eta(q) &= q^{1/24}(1 - q)(1 - q^{2})(1 - q^{3})\cdots\notag\\ &= 2^{-1/3}\sqrt{\frac{2(1 + k)K}{\pi}}\left(\frac{2\sqrt{k}}{1 + k}\sqrt{1 - \frac{4k}{(1 + k)^{2}}}\right)^{1/6}\notag\\ &= 2^{-1/6}\sqrt{\frac{2K}{\pi}}k^{1/12}k'^{1/3}\tag{19}\end{align} and then we can see that \begin{align} P(q) &= 24q\frac{d}{dq}\{\log \eta(q)\}\notag\\ &= \frac{48kk'^{2}K^{2}}{\pi^{2}}\frac{d}{dk}\left\{\log\left(2^{-1/6}\sqrt{\frac{2K}{\pi}}k^{1/12}k'^{1/3}\right)\right\}\notag\\ &= 12kk'^{2}\left(\frac{2K}{\pi}\right)^{2}\left(\frac{1}{2K}\frac{dK}{dk} + \frac{1}{12k} - \frac{k}{3k'^{2}}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{6kk'^{2}}{K}\frac{dK}{dk} + 1 - 5k^{2}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{6E}{K} + k^{2} - 5\right)\tag{20}\end{align} Another set of formulas come by replacing q with -q in (17), (18), (20). Note that replacing q with -q leads to replacing K with k'K and k^{2} with (-k^{2}/k'^{2}). With this understanding we have: \begin{align}Q(-q) &= \left(\frac{2k'K}{\pi}\right)^{4}\left(1 - \frac{14k^{2}}{k'^{2}}+ \frac{k^{4}}{k'^{4}}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}(k'^{4} - 14k^{2}k'^{2}+ k^{4})\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}\{(1 - k^{2})^{2} - 14k^{2}(1 - k^{2})+ k^{4}\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}(1 - 16k^{2} + 16k^{4})\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}(1 - 16k^{2}k'^{2})\notag\\ &= \left(\frac{2K}{\pi}\right)^{4}(1 - 4G^{-24})\tag{21}\end{align} and \begin{align} R(-q) &= \left(\frac{2k'K}{\pi}\right)^{6}\left(1 - \frac{k^{2}}{k'^{2}}\right)\left(1 + 34\frac{k^{2}}{k'^{2}} + \frac{k^{4}}{k'^{4}}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}(1 - 2k^{2})(k'^{4} + 34k^{2}k'^{2} + k^{4})\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}(1 - 2k^{2})(1 + 32k^{2}k'^{2})\notag\\ &= \left(\frac{2K}{\pi}\right)^{6}(1 - 2k^{2})(1 + 8G^{-24})\tag{22}\end{align} To get P(-q) requires more work and to that end we first rewrite the relation (20) in another form: \begin{align}P(q) &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{6kk'^{2}}{K}\frac{dK}{dk} + 1 - 5k^{2}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{12k^{2}k'^{2}}{2kK}\frac{dK}{dk} + 1 - 5k^{2}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{12k^{2}k'^{2}}{K}\frac{dK}{d(k^{2})} + 1 - 5k^{2}\right)\notag\end{align} and then we can find P(-q) as follows: \begin{align}P(-q) &= \left(\frac{2k'K}{\pi}\right)^{2}\left\{\frac{-12k^{2}}{k'^{2}}\left(1 + \frac{k^{2}}{k'^{2}}\right)\frac{1}{k'K}\frac{d(k'K)}{d(-k^{2}/k'^{2})} + 1 + \frac{5k^{2}}{k'^{2}}\right\}\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{6kk'}{K}\frac{d(k'K)}{dk} + 1 + 4k^{2}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{6kk'^{2}}{K}\frac{dK}{dk} + 1 - 2k^{2}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{6(E - k'^{2}K)}{K} + 1 - 2k^{2}\right)\notag\\ &= \left(\frac{2K}{\pi}\right)^{2}\left(\frac{6E}{K} + 4k^{2} - 5\right)\tag{23}\end{align} We next define another invariant J(q) by: J(q) = \frac{Q^{3}(-q) - R^{2}(-q)}{Q^{3}(-q)} = \frac{1728\eta^{24}(-q)}{Q^{3}(-q)} Now from (19) we see that \eta^{24}(q) = 2^{-4}\left(\frac{2K}{\pi}\right)^{12}k^{2}(1 - k^{2})^{4} and hence replacing q by -q we get \begin{align}\eta^{24}(-q) &= 2^{-4}\left(\frac{2k'K}{\pi}\right)^{12}\cdot\frac{-k^{2}}{k'^{2}}\left(1 + \frac{k^{2}}{k'^{2}}\right)^{4}\notag\\ &= 2^{-4}\left(\frac{2K}{\pi}\right)^{12}(-k^{2}k'^{2})\notag\\ &= -2^{-6}\left(\frac{2K}{\pi}\right)^{12}G^{-24}\notag\end{align} Using (21) and definition of J(q) above we arrive at J(q) = \frac{Q^{3}(-q) - R^{2}(-q)}{Q^{3}(-q)} = \frac{-27G^{-24}}{(1 - 4G^{-24})^{3}} = \frac{-27G^{48}}{(G^{24} - 4)^{3}}\tag{24} Also using expressions for \eta^{24}(-q), Q(-q), R(-q) in terms of G we can establish that Q^{3}(-q) - R^{2}(-q) = 1728\eta^{24}(-q) thereby furnishing another proof of (12).Identities Concerning Divisor Functions
From the last post we have the following identities: \begin{align}1 + 480\Phi_{0, 7}(x) &= Q^{2}\tag{25}\\ 1 - 264\Phi_{0, 9}(x) &= QR\tag{26}\\ 691 + 65520\Phi_{0, 11}(x) &= 441Q^{3} + 250R^{2}\tag{27}\\ 1 - 24\Phi_{0, 13}(x) &= Q^{2}R\tag{28}\end{align} First of these identities can be written as: 1 + 480\sum_{n = 1}^{\infty}\sigma_{7}(n)x^{n} = \left(1 + 240\sum_{n = 1}^{\infty}\sigma_{3}(n)x^{n}\right)^{2} Equating coefficients of x^{n} on both sides we get: \sigma_{7}(n) = \sigma_{3}(n) + 120\sum_{i = 1}^{n - 1}\sigma_{3}(i)\sigma_{3}(n - i) so that \sigma_{7}(n) - \sigma_{3}(n) is divisible by 120 for all positive integers n.Similarly from (26) we get: 11\sigma_{9}(n) = \{21\sigma_{5}(n) - 10\sigma_{3}(n)\} + 5040\sum_{i = 1}^{n - 1}\sigma_{3}(i)\sigma_{5}(n - i) and thus 11\sigma_{9}(n) + 10\sigma_{3}(n) - 21\sigma_{5}(n) is divisible by 5040.
From (25) and (28) we get 1 - 24\sum_{n = 1}^{\infty}\sigma_{13}(n)x^{n} = \left(1 + 480\sum_{n = 1}^{\infty}\sigma_{7}(n)x^{n}\right)\left(1 - 504\sum_{n = 1}^{\infty}\sigma_{5}(n)x^{n}\right) and thus on equating coefficients of x^{n} we get \sigma_{13}(n) = \{21\sigma_{5}(n) - 20\sigma_{7}(n)\} + 10080\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{7}(n - i) We can rewrite the equation (27) as 691 + 65520\Phi_{0, 11}(x) = 441(Q^{3} - R^{2}) + 691R^{2} so that 691 + 65520\Phi_{0, 11}(x) = 441\cdot 1728\eta^{24}(x) + 691R^{2}\tag{29} Let us define Ramanujan's Tau function \tau(n) by \sum_{n = 1}^{\infty}\tau(n)x^{n} = \eta^{24}(x) = x\prod_{n = 1}^{\infty}(1 - x^{n})^{24} and then equating coefficients of x^{n} in (29) we get \begin{align}65520\sigma_{11}(n) &= 441\cdot 1728\tau(n) - 691\cdot 1008\sigma_{5}(n)\notag\\ &\,\,\,\,+ 691\cdot 504^{2}\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{5}(n - i)\notag\\ \Rightarrow 65\sigma_{11}(n) &= 756\tau(n) - 691\sigma_{5}(n) + 691\cdot 252\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{5}(n - i)\notag\\ \Rightarrow 65(\sigma_{11}(n) - \tau(n)) &= 691\tau(n) - 691\sigma_{5}(n) + 691\cdot 252\sum_{i = 1}^{n - 1}\sigma_{5}(i)\sigma_{5}(n - i)\notag\end{align} and thus we arrive at the famous congruence satisfied by \tau(n) \tau(n) \equiv \sigma_{11}(n) \pmod{691}\tag{30}
Print/PDF Version
0 comments :: Certain Lambert Series Identities and their Proof via Trigonometry: Part 2
Post a Comment