Ramanujan's Series for $ \pi$
Using the values of the function $ P(q)$ for $ q = e^{-\pi\sqrt{n}}$ (see previous post for the definition of $ P(q)$) Ramanujan was able to derive many beautiful series for $ \pi$. He did this in very clever way. The fundamental idea he used was the fact that the function $ \phi^{4}(q) = (2K/\pi)^{2}$ could be expressed in the form of a generalized hypergeometric series.The General Technique
We first explain the technique in general terms and then give specific examples to illustrate the technique. Let us then suppose that we can express $ (2K/\pi)^{2}$ in the form of a series like $$\left(\frac{2K}{\pi}\right)^{2} = a(k)\sum_{n = 0}^{\infty}b_{n}c^{n}(k)$$ where $ a(k), c(k)$ are algebraic functions of $ k$ and $ b_{n}$ is a rational number. Next we use the fact that $$\eta(q) = q^{1/12}(q^{2};q^{2})_{\infty} = 2^{-1/3}\sqrt{\frac{2K}{\pi}}(kk')^{1/6}$$ so that we get $$\eta^{4}(q) = 2^{-4/3}\left(\frac{2K}{\pi}\right)^{2}(kk')^{2/3}$$ and hence we have the relation of the form $$\eta^{4}(q) = d(k)a(k)\sum_{n = 0}^{\infty}b_{n}c^{n}(k)$$ where $ d(k)$ is algebraic function of $ k$. Logarithmic differentiation yields $$\frac{\pi^{2}P(q)}{6kk'^{2}K^{2}} = \frac{d'(k)}{d(k)} + \frac{a'(k)}{a(k)} + \left(\frac{\pi}{2K}\right)^{2}a(k)\sum_{n = 1}^{\infty}nb_{n}c^{n}(k)\frac{c'(k)}{c(k)}$$ so that $$P(q) = \left(\frac{2K}{\pi}\right)^{2}C(k) + D(k)\sum_{n = 1}^{\infty}nb_{n}c^{n}(k)$$ where $ C(k), D(k)$ are algebraic functions of $ k$.If we put $ q = e^{-\pi\sqrt{n}}$ with $ n$ a positive rational then we see that $$P(e^{-\pi\sqrt{n}}) = \left(\frac{2K}{\pi}\right)^{2}C + D\sum_{m = 1}^{\infty}mb_{m}c^{m}$$ where $ c = c(k), C, D$ are algebraic numbers.
From the previous post we can see that the value of $ P(e^{-\pi\sqrt{n}})$ can be expressed in the form $ (2K/\pi)^{2}A + B/\pi$ with $ A, B \neq 0$ being algebraic numbers. Therefore we get $$\frac{B}{\pi} = \left(\frac{2K}{\pi}\right)^{2}(C - A) + D\sum_{m = 1}^{\infty}mb_{m}c^{m}$$ We can now substitute the value of $ (2K/\pi)^{2}$ from the starting equation and finally get an equation of the form $$\frac{1}{\pi} = \sum_{m = 0}^{\infty}(a + mb)b_{m}c^{m}$$ where $ a, b, c$ are algebraic numbers.
If we do the calculations for $A, B, C, D, a, b, c$ we find that $$\boxed{\displaystyle \begin{align} A &= \frac{R_{n}(k, k')}{2\sqrt{n}},\,\, B = \frac{3}{\sqrt{n}}\notag\\ C &= \frac{3kk'^{2}}{2}\cdot\frac{a'(k)}{a(k)} + (1 - 2k^{2})\notag\\ D &= \frac{3kk'^{2}}{2}\cdot\frac{a(k)c'(k)}{c(k)}\notag\end{align}}$$ $$\boxed{\displaystyle \begin{align} a &= \frac{a(k)(C - A)}{B}\notag\\ &= \frac{\sqrt{n}kk'^{2}}{2}\cdot a'(k) + a(k)\left(\frac{\sqrt{n}}{3}(1 - 2k^{2}) - \frac{R_{n}(k, k')}{6}\right)\notag\\ b &= \frac{D}{B}\notag\\ &= \frac{\sqrt{n}kk'^{2}}{2}\cdot\frac{a(k)c'(k)}{c(k)}\notag\\ c &= c(k)\notag\end{align}}$$ This description fairly sums up Ramanujan's technique. The scheme, although quite non-obvious, when explained looks quite simple, but finding an actual series based on this technique is by no means simple. The skill is in choosing the original series and identifying a suitable function $ c(k)$. The idea is that the value of $ c(k)$ when $ k = k(e^{-\pi\sqrt{n}})$ should be very small when $ n$ is large.
Ramanujan chooses various functions $ c(k)$ which are ultimately tied to the class invariants $ G_{n}, g_{n}$ and provides the final series results and omits the details of the calculations as well as the details of the function $ c(k)$. Even when suitable function $ c(k)$ is chosen the difficult problem is to evaluate $ P(e^{-\pi\sqrt{n}})$ and $ c = c(k(e^{-\pi\sqrt{n}}))$ for a suitably large value of $ n$.
A Simple Example
As an example we will use the following series (see this post): $$\boxed{\displaystyle \left(\frac{2K}{\pi}\right)^{2} = 1 + \left(\frac{1}{2}\right)^{3}(2kk')^{2} + \left(\frac{1\cdot 3}{2\cdot 4}\right)^{3}(2kk')^{4} + \left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^{3}(2kk')^{6} + \cdots}\tag{1}$$ Here $$ a(k) = 1, b_{n} = (1\cdot 3\cdots (2n - 1))^{3}/(2\cdot 4\cdots (2n))^{3}$$ and $$ c(k) = (2kk')^{2} = G_{n}^{-24}, d(k) = 2^{-4/3}(kk')^{2/3}$$ so that $$ a'(k)/a(k) = 0, c'(k)/c(k) = 2(1 - 2k^{2})/kk'^{2}, d'(k)/d(k) = (2/3)((1 - 2k^{2})/kk'^{2})$$ Thus we get \begin{align} P(q) &= \left(\frac{2K}{\pi}\right)^{2}(1 - 2k^{2}) + 3(1 - 2k^{2})\sum_{n = 1}^{\infty}nb_{n}c^{n}(k)\notag\\ &= (1 - 2k^{2})\sum_{n = 0}^{\infty}(3n + 1)b_{n}c^{n}(k)\tag{2}\end{align} Next we need to calculate $ P(e^{-\pi\sqrt{3}})$. To that end we have (see previous post for details) $$3P(q^{3}) - P(q) = \frac{4KL}{\pi^{2}}\{1 + kl + k'l'\}$$ Here $ l < k$ and if we put $ q = e^{-\pi/\sqrt{3}}$, so that $ l = k', L'/L = \sqrt{3}$ and $$3P(e^{-\pi\sqrt{3}}) - P(e^{-\pi/\sqrt{3}}) = \frac{4L^{2}}{\pi^{2}}\cdot\sqrt{3}\cdot\{1 + 2kk'\}$$ Since we have $ \sqrt{kl} + \sqrt{k'l'} = 1$ (modular equation of degree $ 3$), it follows by putting $ l = k'$ that $ 2kk' = 1/2$ and therefore $$3P(e^{-\pi\sqrt{3}}) - P(e^{-\pi/\sqrt{3}}) = \frac{L^{2}}{\pi^{2}}\cdot 6\sqrt{3}$$ And we have $$3P(e^{-\pi\sqrt{3}}) + P(e^{-\pi/\sqrt{3}}) = \frac{6\sqrt{3}}{\pi}$$ Adding these equations we get $$P(e^{-\pi\sqrt{3}}) = \sqrt{3}\left(\frac{L^{2}}{\pi^{2}} + \frac{1}{\pi}\right)$$ Here we need to understand that $ L = K(k(e^{-\pi\sqrt{3}}))$ and hence if we change the notation so that $ q = e^{-\pi\sqrt{3}}, k = k(q)$ then we can write $$P(q) = \sqrt{3}\left(\frac{K^{2}}{\pi^{2}} + \frac{1}{\pi}\right)\tag{3}$$ Now we need to calculate the value of $ k$. Clearly from the modular equation of degree $ 3$ we see that $ kk' = 1/4$ and we must have $ k < k'$. Thus we have \begin{align}&k^{2}(1 - k^{2}) = \frac{1}{16}\notag\\ &\Rightarrow \alpha - \alpha^{2} = \frac{1}{16}\notag\\ &\Rightarrow 16\alpha^{2} - 16\alpha + 1 = 0\notag\\ &\Rightarrow \alpha = \frac{16 - \sqrt{256 - 64}}{32}\text{ (we choose smaller root here)}\notag\\ &\Rightarrow k^{2} = \frac{2 - \sqrt{3}}{4}\notag\end{align} From equations $ (2)$ and $ (3)$ (and using the value of $ k^{2}$ above) we get \begin{align}&\sqrt{3}\left(\frac{K^{2}}{\pi^{2}} + \frac{1}{\pi}\right) = \frac{\sqrt{3}}{2}\sum_{n = 0}^{\infty}(3n + 1)b_{n}c^{n}(k)\notag\\ &\Rightarrow \frac{4K^{2}}{\pi^{2}} + \frac{4}{\pi} = \sum_{n = 0}^{\infty}(6n + 2)b_{n}c^{n}(k)\notag\\ &\Rightarrow \sum_{n = 0}^{\infty}b_{n}c^{n}(k) + \frac{4}{\pi} = \sum_{n = 0}^{\infty}(6n + 2)b_{n}c^{n}(k)\notag\\ &\Rightarrow \frac{4}{\pi} = \sum_{n = 0}^{\infty}(6n + 1)b_{n}c^{n}(k)\notag\end{align} Since $ c(k) = (2kk')^{2} = 1/4$ it follows that we have $$ \boxed{\displaystyle \frac{4}{\pi} = 1 + \frac{7}{4}\left(\frac{1}{2}\right)^{3} + \frac{13}{4^{2}}\left(\frac{1\cdot 3}{2\cdot 4}\right)^{3} + \frac{19}{4^{3}}\left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^{3} + \cdots}\tag{4}$$ This is the first and the simplest series Ramanujan obtains with this technique. Based on the same function $ c(k)$ Ramanujan gives further series corresponding to modular equations of degree $ n = 7, 15$.For general $ n$ it is easily seen that the value of $ P(e^{-\pi\sqrt{n}})$ is given by $$P(e^{-\pi\sqrt{n}}) = \frac{R_{n}(k, k')}{2\sqrt{n}}\left(\frac{2K}{\pi}\right)^{2} + \frac{3}{\pi\sqrt{n}}$$ Using this result and noting that $ 2kk' = G_{n}^{-12}$ we can write the general formula as follows: $$\boxed{\displaystyle \frac{1}{\pi} = \sum_{m = 0}^{\infty}\left(\frac{1\cdot 3\cdot 5\cdots (2m - 1)}{2\cdot 4\cdot 6\cdots (2m)}\right)^{3}(a + bm)G_{n}^{-24m}}$$ where $$a = \frac{\sqrt{n}}{3}(1 - 2k^{2}) - \frac{R_{n}(k, k')}{6},\,\,\,b = \sqrt{n}(1 - 2k^{2})$$ In the formula $(1)$ we note that $K, k, k'$ are functions of nome $q$ and hence replacing $q$ by $-q$ we get: \begin{align}\left(\frac{2K}{\pi}\right)^{2} = \theta_{3}^{4}(q) &\rightarrow \theta_{3}^{4}(-q)\notag\\ &= \theta_{4}^{4}(q) = \frac{\theta_{4}^{4}(q)}{\theta_{3}^{4}(q)}\theta_{3}^{4}(q)\notag\\ &= k'^{2}\left(\frac{2K}{\pi}\right)^{2}\notag\end{align} \begin{align}(2kk')^{2} &= 4k^{2}k'^{2} = 4(1 - k'^{2})k'^{2}\notag\\ &= 4\left(1 - \frac{\theta_{4}^{4}(q)}{\theta_{3}^{4}(q)}\right)\frac{\theta_{4}^{4}(q)}{\theta_{3}^{4}(q)}\notag\\ &\rightarrow 4\left(1 - \frac{\theta_{4}^{4}(-q)}{\theta_{3}^{4}(-q)}\right)\frac{\theta_{4}^{4}(-q)}{\theta_{3}^{4}(-q)}\notag\\ &= 4\left(1 - \frac{\theta_{3}^{4}(q)}{\theta_{4}^{4}(q)}\right)\frac{\theta_{3}^{4}(q)}{\theta_{4}^{4}(q)}\notag\\ &= 4\left(1 - \frac{1}{k'^{2}}\right)\frac{1}{k'^{2}}\notag\\ &= \frac{-4k^{2}}{k'^{4}} = -\left(\frac{2k}{k'^{2}}\right)^{2} = -g_{n}^{-24}\notag\end{align} Hence we get another formula $$\boxed{\displaystyle \left(\frac{2K}{\pi}\right)^{2} = \frac{1}{k'^{2}}\sum_{m = 0}^{\infty}(-1)^{m}\left(\frac{1\cdot 3 \cdot 5\cdots (2m - 1)}{2 \cdot 4 \cdot 6\cdots (2m)}\right)^{3}g_{n}^{-24m}}\tag{5}$$ If we apply Ramanujan's technique on the above formula we obtain the following: $$\boxed{\displaystyle \frac{1}{\pi} = \sum_{m = 0}^{\infty}(-1)^{m}\left(\frac{1\cdot 3 \cdot 5\cdots (2m - 1)}{2 \cdot 4 \cdot 6\cdots (2m)}\right)^{3}(a + bm)g_{n}^{-24m}}$$ where $$a = \frac{\sqrt{n}(1 + k^{2})}{3k'^{2}} - \frac{R_{n}(k, k')}{6k'^{2}},\,\,\, b = \frac{\sqrt{n}(1 + k^{2})}{1 - k^{2}}$$ Putting $n = 2$ and noting that $k = (\sqrt{2} - 1), g_{2} = 1, R_{2}(k, k') = 2k$ we get another formula of Ramanujan: $$\boxed{\displaystyle \frac{2}{\pi} = \sum_{m = 0}^{\infty}(-1)^{m}\left(\frac{1\cdot 3 \cdot 5\cdots (2m - 1)}{2 \cdot 4 \cdot 6\cdots (2m)}\right)^{3}(4m + 1)}$$ If we replace $k$ by $(1 - k')/(1 + k')$ in $(5)$ and note that $k^{2}/2k' = g_{4n}^{-12}$ then we get: $$\boxed{\displaystyle \left(\frac{2K}{\pi}\right)^{2} = \frac{1}{k'}\sum_{m = 0}^{\infty}(-1)^{m}\left(\frac{1\cdot 3 \cdot 5\cdots (2m - 1)}{2 \cdot 4 \cdot 6\cdots (2m)}\right)^{3}g_{4n}^{-24m}}\tag{6}$$ and then we get another general series for $1/\pi$: $$\boxed{\displaystyle \frac{1}{\pi} = \sum_{m = 0}^{\infty}(-1)^{m}\left(\frac{1\cdot 3 \cdot 5\cdots (2m - 1)}{2 \cdot 4 \cdot 6\cdots (2m)}\right)^{3}(a + bm)g_{4n}^{-24m}}$$ where \begin{align}a &= \sqrt{n}g_{4n}^{-12} + \frac{1}{k'}\left(\frac{\sqrt{n}}{3}(1 - 2k^{2}) - \frac{R_{n}(k, k')}{6}\right)\notag\\ b &= \sqrt{n}\left(k' + \frac{1}{k'}\right)\notag\end{align} In the next post we will discuss the series based on alternative theories developed by Ramanujan.
Print/PDF Version
0 comments :: Modular Equations and Approximations to π(PI): Part 2
Post a Comment