Preliminary Results
Let us consider the ascending Landen sequence of moduli \cdots < k_{-n} < k_{-(n - 1)} < \cdots < k_{-2} < k_{-1} < k_{0} = k < k_{1} < k_{2} < \cdots < k_{n} < \cdots where k_{n + 1} = \frac{2\sqrt{k_{n}}}{1 + k_{n}},\,\, k_{n} = \frac{1 - k_{n + 1}'}{1 + k_{n + 1}'} Then it can be checked easily that the sequence of complementary moduli in reverse order \cdots < k_{n}' < k_{n - 1}' < \cdots < k_{2}' < k_{1}' < k_{0}' = k' < k_{-1}' < k_{-2}' < \cdots < k_{-n}' < \cdots also forms an ascending Landen sequence.Also let us put K_{n} = K(k_{n}), K_{n}' = K(k_{n}'). We then have K_{n + 1} = (1 + k_{n})K_{n} for all n. Hence we can write \begin{align} K_{0} &= (1 + k_{-1})K_{-1} = (1 + k_{-1})(1 + k_{-2})K_{-2}\notag\\ &= (1 + k_{-1})(1 + k_{-2}) \cdots (1 + k_{-n})K_{-n}\notag\\ \Rightarrow \frac{K_{0}}{K_{-n}} &= (1 + k_{-1})(1 + k_{-2}) \cdots (1 + k_{-n})\notag \end{align} and letting n \to \infty and noting that k_{-n} \to 0 so that K_{-n} \to \pi / 2 we get \frac{2K}{\pi} = (1 + k_{-1})(1 + k_{-2})(1 + k_{-3}) \cdots and more generally if \lambda_{0} > \lambda_{1} > \lambda_{2} > \cdots forms a decreasing Landen sequence then \frac{2\Lambda}{\pi} = \frac{2K(\lambda_{0})}{\pi} = (1 + \lambda_{1})(1 + \lambda_{2})(1 + \lambda_{3}) \cdots In particular we have \frac{2K'}{\pi} = (1 + k_{1}')(1 + k_{2}')(1 + k_{3}')\cdots Again we note that \begin{align} (1 + k_{1}')K_{1} &= 2K\notag\\ (1 + k_{2}')K_{2} &= 2K_{1}\notag\\ (1 + k_{3}')K_{3} &= 2K_{2}\notag\\ (1 + k_{4}')K_{4} &= 2K_{3}\notag\\ (1 + k_{n}')K_{n} &= 2K_{n - 1}\notag \end{align} Multiplying theabove equations we get (1 + k_{1}')(1 + k_{2}')(1 + k_{3}') \cdots (1 + k_{n}')K_{n} = 2^{n}K or \frac{K_{n}}{2^{n}K} = \frac{1}{(1 + k_{1}')(1 + k_{2}')(1 + k_{3}') \cdots (1 + k_{n}')} Taking limits as n \to \infty we get \lim_{n \to \infty}\frac{K_{n}}{2^{n}K} = \frac{\pi}{2K'}
Infinite Product Expansion of Elliptic Functions
We shall now use the standard Landen's ascending transformation \begin{align} \text{sn}(u, k) &= \dfrac{(1 + k_{1}')\,\text{sn}\left(\dfrac{(1 + k)u}{2}, k_{1}\right)\,\text{cn}\left(\dfrac{(1 + k)u}{2}, k_{1}\right)}{\text{dn}\left(\dfrac{(1 + k)u}{2}, k_{1}\right)}\notag\\ &= \dfrac{(1 + k_{1}')\,\text{sn}\left(\dfrac{K_{1}u}{2K}, k_{1}\right)\,\text{cn}\left(\dfrac{K_{1}u}{2K}, k_{1}\right)}{\text{dn}\left(\dfrac{K_{1}u}{2K}, k_{1}\right)}\notag\\ &= (1 + k_{1}')\,\text{sn}\left(\dfrac{K_{1}u}{2K}, k_{1}\right)\,\text{sn}\left(\dfrac{K_{1}u}{2K} + K_{1}, k_{1}\right)\notag\\ &= (1 + k_{1}')\,\text{sn}\left(\dfrac{K_{1}u}{2K}, k_{1}\right)\,\text{sn}\left(\dfrac{K_{1}}{2K}(u + 2K), k_{1}\right)\notag \end{align} Using the same formula again we get \begin{align} \text{sn}\left(\dfrac{K_{1}u}{2K}, k_{1}\right) &= (1 + k_{2}')\,\text{sn}\left(\dfrac{K_{2}}{2K_{1}}\dfrac{K_{1}u}{2K}, k_{2}\right)\,\text{sn}\left(\dfrac{K_{2}}{2K_{1}}\left(\dfrac{K_{1}u}{2K} + 2K_{1}\right), k_{2}\right)\notag\\ &= (1 + k_{2}')\,\text{sn}\left(\dfrac{K_{2}u}{2^{2}K}, k_{2}\right)\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(u + 4K), k_{2}\right)\notag \end{align} and by the same token \text{sn}\left(\dfrac{K_{1}}{2K}(u + 2K), k_{1}\right)= (1 + k_{2}')\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(u + 2K), k_{2}\right)\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(u + 6K), k_{2}\right) Hence we have \begin{align}\text{sn}(u, k) &= (1 + k_{1}')(1 + k_{2}')^{2}\,\text{sn}\left(\dfrac{K_{2}u}{2^{2}K}, k_{2}\right)\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(u + 2K), k_{2}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(u + 4K), k_{2}\right)\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(u + 6K), k_{2}\right)\notag \end{align} We can write the last term as \text{sn}\left(\dfrac{K_{2}}{2^{2}K}(u + 6K), k_{2}\right) = \text{sn}\left(2K_{2} - \dfrac{K_{2}}{2^{2}K}(u + 6K), k_{2}\right) = \text{sn}\left(\dfrac{K_{2}}{2^{2}K}(2K - u), k_{2}\right) and thus we can write \begin{align}\text{sn}(u, k) &= (1 + k_{1}')(1 + k_{2}')^{2}\,\text{sn}\left(\dfrac{K_{2}u}{2^{2}K}, k_{2}\right)\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(2K + u), k_{2}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(2K - u), k_{2}\right)\,\text{sn}\left(\dfrac{K_{2}}{2^{2}K}(4K + u), k_{2}\right)\notag \end{align} This can be continued further in the same way to yield \begin{align} \text{sn}(u, k) &= (1 + k_{1}')(1 + k_{2}')^{2}(1 + k_{3}')^{4}\,\text{sn}\left(\dfrac{K_{3}u}{2^{3}K}, k_{3}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{3}}{2^{3}K}(2K + u), k_{3}\right)\,\text{sn}\left(\dfrac{K_{3}}{2^{3}K}(2K - u), k_{3}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{3}}{2^{3}K}(4K + u), k_{3}\right)\,\text{sn}\left(\dfrac{K_{3}}{2^{3}K}(4K - u), k_{3}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{3}}{2^{3}K}(6K + u), k_{3}\right)\,\text{sn}\left(\dfrac{K_{3}}{2^{3}K}(6K - u), k_{3}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{3}}{2^{3}K}(8K + u), k_{3}\right)\notag \end{align} Finally if we continue till the modulus k_{n} we get \begin{align} \text{sn}(u, k) &= (1 + k_{1}')(1 + k_{2}')^{2}(1 + k_{3}')^{4}\cdots (1 + k_{n}')^{2^{n - 1}}\,\text{sn}\left(\dfrac{K_{n}u}{2^{n}K}, k_{n}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}(2K + u), k_{n}\right)\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}(2K - u), k_{n}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}(4K + u), k_{n}\right)\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}(4K - u), k_{n}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}(6K + u), k_{n}\right)\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}(6K - u), k_{n}\right)\notag\\ &\,\,\,\,\,\,\,\,\cdots \cdots\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}((2^{n} - 2)K + u), k_{n}\right)\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}((2^{n} - 2)K - u), k_{n}\right)\notag\\ &\,\,\,\,\,\,\,\,\text{sn}\left(\dfrac{K_{n}}{2^{n}K}(2^{n}K + u), k_{n}\right)\notag \end{align} Now we can take limits as n \to \infty (assuming that we have convergence for the entities we are concerned with here, this assumption being justified at a later stage) and note that k_{n} \to 1 and the ratio K_{n} / (2^{n}K) \to \pi / (2K'). Thus we arrive at \text{sn}(u, k) = A'\,\text{sn}\left(\frac{\pi u}{2K'}, 1\right) \prod_{n = 1}^{\infty}\,\text{sn}\left(\frac{\pi}{2K'}(2nK + u), 1\right)\,\text{sn}\left(\frac{\pi}{2K'}(2nK - u), 1\right) where A' = \lim_{n \to \infty} (1 + k_{1}')(1 + k_{2}')^{2}(1 + k_{3}')^{4}\cdots (1 + k_{n}')^{2^{n - 1}} Since \text{sn}(v, 1) = \tanh v = \frac{e^{v} - e^{-v}}{e^{v} + e^{-v}} we can write \begin{align} &\text{sn}\left(\frac{\pi}{2K'}(2nK + u), 1\right)\,\text{sn}\left(\frac{\pi}{2K'}(2nK - u), 1\right)\notag\\ &\,\,\,\,\,\,\,\,= \tanh\left(\frac{n\pi K}{K'} + \frac{\pi u}{2K'}\right)\tanh\left(\frac{n\pi K}{K'} - \frac{\pi u}{2K'}\right)\notag \end{align} Let us put q' = \exp\left(-\frac{\pi K}{K'}\right),\,\,\, x = \frac{\pi u}{2K'} and then the above expression becomes \begin{align} &\left(\frac{q'^{-n}e^{x} - q'^{n}e^{-x}}{q'^{-n}e^{x} - q'^{n}e^{-x}}\right)\left(\frac{q'^{-n}e^{-x} - q'^{n}e^{x}}{q'^{-n}e^{-x} + q'^{n}e^{x}}\right)\notag\\ &\,\,\,\,\,\,\,\,= \frac{q'^{-2n} + q'^{2n} - (e^{2x} + e^{-2x})}{q'^{-2n} + q'^{2n} + (e^{2x} + e^{-2x})}\notag\\ &\,\,\,\,\,\,\,\,= \frac{q'^{-2n} + q'^{2n} - 2\cos(2ix)}{q'^{-2n} + q'^{2n} + 2\cos(2ix)}\notag\\ &\,\,\,\,\,\,\,\,= \frac{1 - 2q'^{2n}\cos(2ix) + q'^{4n}}{1 + 2q'^{2n}\cos(2ix) + q'^{4n}}\notag\\ &\,\,\,\,\,\,\,\,= \dfrac{1 - 2q'^{2n}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n}}{1 + 2q'^{2n}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n}}\notag \end{align} Hence we finally have \text{sn}(u, k) = A'\tanh\left(\dfrac{\pi u}{2K'}\right)\prod_{n = 1}^{\infty}\dfrac{1 - 2q'^{2n}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n}}{1 + 2q'^{2n}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n}} Noting that \tanh x = -i \tan(ix) and \text{sn}(u, k) = -i \,\text{sc}(iu, k') we get \dfrac{\text{sn}(iu, k')}{\text{cn}(iu, k')} = A'\tan\left(\dfrac{\pi iu}{2K'}\right)\prod_{n = 1}^{\infty}\dfrac{1 - 2q'^{2n}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n}}{1 + 2q'^{2n}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n}} Replacing iu by u and k' by k we get \dfrac{\text{sn}(u, k)}{\text{cn}(u, k)} = A\tan\left(\dfrac{\pi u}{2K}\right)\prod_{n = 1}^{\infty}\dfrac{1 - 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}}{1 + 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}} where A is some constant and q = \exp(-\pi K' / K).The above equation marks the birth of the parameter q and all things q-otic (not chaotic!!) like the q-series, q-products. We shall have occasion to deal with lot of such q-otic stuff in later posts.
We can again go back to the equation \text{sn}(u, k) = A'\,\text{sn}\left(\frac{\pi u}{2K'}, 1\right) \prod_{n = 1}^{\infty}\,\text{sn}\left(\frac{\pi}{2K'}(2nK + u), 1\right)\,\text{sn}\left(\frac{\pi}{2K'}(2nK - u), 1\right) Replacing u by u + K we get \begin{align} \text{sn}(u + K, k) &= A'\,\text{sn}\left(\frac{\pi (u + K)}{2K'}, 1\right)\notag\\ &\,\,\,\,\,\,\,\, \prod_{n = 1}^{\infty}\,\text{sn}\left(\frac{\pi}{2K'}((2n + 1)K + u), 1\right)\,\text{sn}\left(\frac{\pi}{2K'}((2n - 1)K - u), 1\right)\notag\\ \Rightarrow \dfrac{\text{cn}(u, k)}{\text{dn}(u, k)} &= A'\prod_{n = 1}^{\infty}\,\text{sn}\left(\frac{\pi}{2K'}((2n - 1)K + u), 1\right)\,\text{sn}\left(\frac{\pi}{2K'}((2n - 1)K - u), 1\right)\notag \end{align} and like the previous case we have \begin{align} \dfrac{\text{cn}(u, k)}{\text{dn}(u, k)} &= A'\prod_{n = 1}^{\infty}\dfrac{1 - 2q'^{2n - 1}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n - 2}}{1 + 2q'^{2n - 1}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n - 2}}\notag\\ \Rightarrow \dfrac{1}{\text{dn}(iu, k')} &= A'\prod_{n = 1}^{\infty}\dfrac{1 - 2q'^{2n - 1}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n - 2}}{1 + 2q'^{2n - 1}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n - 2}}\notag\\ \Rightarrow \text{dn}(iu, k') &= \dfrac{1}{A'}\prod_{n = 1}^{\infty}\dfrac{1 + 2q'^{2n - 1}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n - 2}}{1 - 2q'^{2n - 1}\cos\left(\dfrac{\pi iu}{K'}\right) + q'^{4n - 2}}\notag \end{align} Replacing iu by u and k' by k we get \text{dn}(u, k) = \dfrac{1}{A}\prod_{n = 1}^{\infty}\dfrac{1 + 2q^{2n - 1}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n - 2}}{1 - 2q^{2n - 1}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n - 2}} To evaluate the constant A we put u = 0 in the above equation and get A = \prod_{n = 1}^{\infty}\dfrac{1 + 2q^{2n - 1} + q^{4n - 2}}{1 - 2q^{2n - 1} + q^{4n - 2}} = \prod_{n = 1}^{\infty}\left(\dfrac{1 + q^{2n - 1}}{1 - q^{2n - 1}}\right)^{2} Again putting u = K we get k' = \dfrac{1}{A}\prod_{n = 1}^{\infty}\dfrac{1 - 2q^{2n - 1} + q^{4n - 2}}{1 + 2q^{2n - 1} + q^{4n - 2}} = \frac{1}{A^{2}} Thus we get \frac{1}{A} = \sqrt{k'},\,\,\,\,\,\, k' = \prod_{n = 1}^{\infty}\left(\frac{1 - q^{2n - 1}}{1 + q^{2n - 1}}\right)^{4} It now follows that \begin{align} \text{dn}(u, k) &= \sqrt{k'}\prod_{n = 1}^{\infty}\dfrac{1 + 2q^{2n - 1}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n - 2}}{1 - 2q^{2n - 1}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n - 2}}\notag\\ \dfrac{\text{sn}(u, k)}{\text{cn}(u, k)} &= \frac{1}{\sqrt{k'}}\tan\left(\dfrac{\pi u}{2K}\right)\prod_{n = 1}^{\infty}\dfrac{1 - 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}}{1 + 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}}\notag\\ \Rightarrow \dfrac{\text{sn}(u, k)}{\text{cn}(u, k)\,\tan\left(\dfrac{\pi u}{2K}\right)} &= \frac{1}{\sqrt{k'}}\prod_{n = 1}^{\infty}\dfrac{1 - 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}}{1 + 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}}\notag \end{align} Taking limits as u \to 0 we get \begin{align} \dfrac{2K}{\pi} &= \frac{1}{\sqrt{k'}}\prod_{n = 1}^{\infty}\dfrac{1 - 2q^{2n} + q^{4n}}{1 + 2q^{2n} + q^{4n}} = \frac{1}{\sqrt{k'}}\prod_{n = 1}^{\infty}\left(\frac{1 - q^{2n}}{1 + q^{2n}}\right)^{2}\notag\\ \Rightarrow \dfrac{2\sqrt{k'}K}{\pi} &= \prod_{n = 1}^{\infty}\left(\frac{1 - q^{2n}}{1 + q^{2n}}\right)^{2}\notag \end{align} Multiplying by \sqrt{k'} (and its infinite product equivalent) we get \frac{2k'K}{\pi} = \prod_{n = 1}^{\infty}\left(\frac{1 - q^{n}}{1 + q^{n}}\right)^{2} Again \begin{align} \frac{2K}{\pi} &= \frac{1}{\sqrt{k'}}\prod_{n = 1}^{\infty}\left(\frac{1 - q^{2n}}{1 + q^{2n}}\right)^{2} = A\prod_{n = 1}^{\infty}\left(\frac{1 - q^{2n}}{1 + q^{2n}}\right)^{2}\notag\\ &= \prod_{n = 1}^{\infty}\left(\dfrac{1 + q^{2n - 1}}{1 - q^{2n - 1}}\right)^{2}\left(\frac{1 - q^{2n}}{1 + q^{2n}}\right)^{2}\notag\\ \Rightarrow \frac{2K}{\pi} &= \prod_{n = 1}^{\infty}\{(1 - q^{2n})(1 + q^{2n - 1})^{2}\}^{2}\notag\end{align} To summarize: \begin{align} \dfrac{\text{sn}(u, k)}{\text{cn}(u, k)} &= \frac{1}{\sqrt{k'}}\tan\left(\dfrac{\pi u}{2K}\right)\prod_{n = 1}^{\infty}\dfrac{1 - 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}}{1 + 2q^{2n}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n}}\notag\\ \text{dn}(u, k) &= \sqrt{k'}\prod_{n = 1}^{\infty}\dfrac{1 + 2q^{2n - 1}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n - 2}}{1 - 2q^{2n - 1}\cos\left(\dfrac{\pi u}{K}\right) + q^{4n - 2}}\notag\\ \frac{2K}{\pi} &= \prod_{n = 1}^{\infty}\{(1 - q^{2n})(1 + q^{2n - 1})^{2}\}^{2}\notag\\ \frac{2k'K}{\pi} &= \prod_{n = 1}^{\infty}\left(\frac{1 - q^{n}}{1 + q^{n}}\right)^{2}\notag\\ \dfrac{2\sqrt{k'}K}{\pi} &= \prod_{n = 1}^{\infty}\left(\frac{1 - q^{2n}}{1 + q^{2n}}\right)^{2}\notag\\ k' &= \prod_{n = 1}^{\infty}\left(\frac{1 - q^{2n - 1}}{1 + q^{2n - 1}}\right)^{4}\notag \end{align} As we can see above the elliptic functions have been expressed as ratio of two infinite products. Each of the infinite products in numerator and denominator belongs to a class of functions known as the Theta Functions which will form the main topic of the next post. In that post we will also justify the results which we have obtained here (by assuming the desired convergence of the infinite products involved).
Print/PDF Version
0 comments :: Elliptic Functions: Infinite Products
Post a Comment