Elementary Approach to Modular Equations: Jacobi's Transformation Theory 4

Be the first to leave a comment!

Transformation of Elliptic Functions

The relation y = \frac{x}{M}\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{x^{2}}{\text{sn}^{2}\,4s\omega}}{1 - k^{2}x^{2}\text{sn}^{2}\,4s\omega} and other variants of it \begin{align}1 - y &= (1 - x)\prod_{s = 1}^{(p - 1)/2}\dfrac{\left(1 - \dfrac{x}{\text{sn}(K - 4s\omega)}\right)^{2}}{1 - k^{2}x^{2}\,\text{sn}^{2}\,4s\omega}\notag\\ 1 + y &= (1 + x)\prod_{s = 1}^{(p - 1)/2}\dfrac{\left(1 + \dfrac{x}{\text{sn}(K - 4s\omega)}\right)^{2}}{1 - k^{2}x^{2}\,\text{sn}^{2}\,4s\omega}\notag\\ 1 - ly &= (1 - kx)\prod_{s = 1}^{(p - 1)/2}\frac{(1 - kx\,\text{sn}(K - 4s\omega))^{2}}{1 - k^{2}x^{2}\,\text{sn}^{2}\,4s\omega}\notag\\ 1 + ly &= (1 + kx)\prod_{s = 1}^{(p - 1)/2}\frac{(1 + kx\,\text{sn}(K - 4s\omega))^{2}}{1 - k^{2}x^{2}\,\text{sn}^{2}\,4s\omega}\notag\end{align} as described in previous post lead to the differential equation \frac{Mdy}{\sqrt{(1 - y^{2})(1 - l^{2}y^{2})}} = \frac{dx}{\sqrt{(1 - x^{2})(1 - k^{2}x^{2})}} when M = (-1)^{(p - 1)/2}\prod_{s = 1}^{(p - 1)/2}\left(\frac{\text{sn}(K - 4s\omega)}{\text{sn}\,4s\omega}\right)^{2} and l = k^{p}\prod_{s = 1}^{(p - 1)/2}\text{sn}^{4}(K - 4s\omega)
Putting x = \text{sn}(u, k) in the differential equation we see that y = \text{sn}(u/M, l). Hence the relation between x and y in effect expresses \text{sn}(u/M, l) in terms of elliptic functions of a different but related modulus k.

Thus we obtain \text{sn}\left(\frac{u}{M}, l\right) = \frac{\text{sn}\,u}{M}\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}\,4s\omega}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,4s\omega} Using the expressions of 1 - y, 1 + y, 1 - ly, 1 + ly it is easy to see that \begin{align}\sqrt{1 - y^{2}} &= \sqrt{1 - x^{2}}\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{x^{2}}{\text{sn}^{2}(K - 4s\omega)}}{1 - k^{2}x^{2}\,\text{sn}^{2}\,4s\omega}\notag\\ \sqrt{1 - l^{2}y^{2}} &= \sqrt{1 - k^{2}x^{2}}\prod_{s = 1}^{(p - 1)/2}\frac{1 - k^{2}x^{2}\,\text{sn}^{2}(K - 4s\omega)}{1 - k^{2}x^{2}\,\text{sn}^{2}\,4s\omega}\notag\end{align} In the last relation if we put x = 1 so that y = 1 we get the expression for l' as l' = k'\prod_{s = 1}^{(p - 1)/2}\frac{1 - k^{2}\,\text{sn}^{2}(K - 4s\omega)}{1 - k^{2}\,\text{sn}^{2}\,4s\omega} = k'\prod_{s = 1}^{(p - 1)/2}\frac{\text{dn}^{2}(K - 4s\omega)}{\text{dn}^{2}\,4s\omega} = k'\prod_{s = 1}^{(p - 1)/2}\left(\frac{k'}{\text{dn}^{2}\,4s\omega}\right)^{2} and so l' = \dfrac{k'^{p}}{{\displaystyle\prod_{s = 1}^{(p - 1)/2}\text{dn}^{4}\,4s\omega}} Putting x = \text{sn}\,u in the expressions for \sqrt{1 - y^{2}}, \sqrt{1 - l^{2}y^{2}} we get the following results: \begin{align}\text{cn}\left(\frac{u}{M}, l\right) &= \text{cn}\,u\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}(K - 4s\omega)}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,4s\omega}\notag\\ \text{dn}\left(\frac{u}{M}, l\right) &= \text{dn}\,u\prod_{s = 1}^{(p - 1)/2}\frac{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}(K - 4s\omega)}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,4s\omega}\notag\end{align} The above formulas remain unchanged if M is replaced by -M and hence in the above formulas we can keep M = \prod_{s = 1}^{(p - 1)/2}\left(\frac{\text{sn}(K - 4s\omega)}{\text{sn}\,4s\omega}\right)^{2} Now the values of \text{sn}(u + 4\omega), \text{sn}(u + 8\omega), \ldots, \text{sn}(u + 2(p - 1)\omega) are the same as the values \text{sn}(u + 2\omega), \text{sn}(u + 4\omega), \ldots, \text{sn}(u + (p - 1)\omega) except for the order of terms and sign of each term. It is best to check this by putting some actual odd value of p (like 3, 5 etc). But upon squaring these values we see that the problem of sign no longer exists and therefore in each of the above relations we can actually replace 4s by 2s (by putting u = 0 and u = K and noting that \text{sn}(K + \alpha) = \text{sn}(K - \alpha). Thus we arrive at the following: \begin{align}\text{sn}\left(\frac{u}{M}, l\right) &= \frac{\text{sn}\,u}{M}\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}\,2s\omega}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,2s\omega}\notag\\ \text{cn}\left(\frac{u}{M}, l\right) &= \text{cn}\,u\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}(K - 2s\omega)}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,2s\omega}\notag\\ \text{dn}\left(\frac{u}{M}, l\right) &= \text{dn}\,u\prod_{s = 1}^{(p - 1)/2}\frac{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}(K - 2s\omega)}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,2s\omega}\notag\\ M &= \prod_{s = 1}^{(p - 1)/2}\left(\frac{\text{sn}(K - 2s\omega)}{\text{sn}\,2s\omega}\right)^{2}\notag\\ l &= k^{p}\prod_{s = 1}^{(p - 1)/2}\text{sn}^{4}(K - 2s\omega)\notag\\ l' &= \dfrac{k'^{p}}{{\displaystyle\prod_{s = 1}^{(p - 1)/2}\text{dn}^{4}\,2s\omega}}\notag\end{align} In the development of these formulas so far we have assumed that \omega = (mK + m'iK')/p where m, m' are relatively prime to each other, but we have not given any specific values to m, m'. It turns that by giving different values to m and m' we arrive at different transformations. Out of all these transformations two are real i.e. the relation between x and y is expressed using real numbers as coefficients. We are going to study these two transformations next.

Jacobi's First Real Transformation

By choosing m = 1, m' = 0 we get \omega = K/p which is a real number and from this we instantly see that all the numbers involved in the formulas mentioned above are real numbers. The corresponding formulas are as follows: \begin{align}\text{sn}\left(\frac{u}{M}, l\right) &= \frac{\text{sn}\,u}{M}\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}\,\dfrac{2sK}{p}}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,\dfrac{2sK}{p}}\tag{1}\\ \text{cn}\left(\frac{u}{M}, l\right) &= \text{cn}\,u\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}\left(K - \dfrac{2sK}{p}\right)}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,\dfrac{2sK}{p}}\tag{2}\\ \text{dn}\left(\frac{u}{M}, l\right) &= \text{dn}\,u\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\left(K - \dfrac{2sK}{p}\right)}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,\dfrac{2sK}{p}}\tag{3}\\ M &= \prod_{s = 1}^{(p - 1)/2}\left(\dfrac{\text{sn}\left(K - \dfrac{2sK}{p}\right)}{\text{sn}\,\dfrac{2sK}{p}}\right)^{2}\tag{4}\\ l &= k^{p}\prod_{s = 1}^{(p - 1)/2}\text{sn}^{4}\left(K - \frac{2sK}{p}\right)\tag{5}\\ l' &= \dfrac{k'^{p}}{{\displaystyle\prod_{s = 1}^{(p - 1)/2}\text{dn}^{4}\,\frac{2sK}{p}}}\tag{6}\end{align} It is easy to see that the least positive value of u for which the right side of (1) vanishes is u = 2K/p and the left side of this equation vanishes when u/M = 2L. Equating these two values of u we get the relation K/pM = L.

Jacobi's First Complementary Transformation

Next we need to recast the above formulas in another form by using the identities: \begin{align}\dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}\,v}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,v} &= -\frac{\text{sn}(u + v)\,\text{sn}(u - v)}{\text{sn}^{2}\,v}\notag\\ \dfrac{1 - \dfrac{\text{sn}^{2}\,u}{\text{sn}^{2}(K - v)}}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,v} &= \frac{\text{cn}(u + v)\,\text{cn}(u - v)}{\text{cn}^{2}\,v}\notag\\ \frac{1 - k^{2}\text{sn}^{2}\,u\,\text{sn}^{2}(K - v)}{1 - k^{2}\,\text{sn}^{2}\,u\,\text{sn}^{2}\,v} &= \frac{\text{dn}(u + v)\,\text{dn}(u - v)}{\text{dn}^{2}\,v}\notag\end{align} On applying these identities to the formulas (1) and using (4) to replace M we get \begin{align}\text{sn}\left(\frac{u}{M}, l\right) &= (-1)^{(p - 1)/2}\,\text{sn}\,u\prod_{s = 1}^{(p - 1)/2}\left(\dfrac{\text{sn}\,\dfrac{2sK}{p}}{\text{sn}\left(K - \dfrac{2sK}{p}\right)}\right)^{2}\notag\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\prod_{s = 1}^{(p - 1)/2}\dfrac{\text{sn}\left(u + \dfrac{2sK}{p}\right)\,\text{sn}\left(u - \dfrac{2sK}{p}\right)}{\text{sn}^{2}\,\dfrac{2sK}{p}}\notag\end{align} and using equation (5) we get \text{sn}\left(\frac{u}{M}, l\right) = (-1)^{(p - 1)/2}\sqrt{\frac{k^{p}}{l}}\prod_{s = -(p - 1)/2}^{(p - 1)/2}\text{sn}\left(u + \frac{2sK}{p}\right)\tag{7} and similarly \begin{align}\text{cn}\left(\frac{u}{M}, l\right) &= \sqrt{\frac{l'k^{p}}{lk'^{p}}}\prod_{s = -(p - 1)/2}^{(p - 1)/2}\text{cn}\left(u + \frac{2sK}{p}\right)\tag{8}\\ \text{dn}\left(\frac{u}{M}, l\right) &= \sqrt{\frac{l'}{k'^{p}}}\prod_{s = -(p - 1)/2}^{(p - 1)/2}\text{dn}\left(u + \frac{2sK}{p}\right)\tag{9}\end{align} Dividing the equation (7) by equation (8) we get \text{sc}\left(\frac{u}{M}, l\right) = (-1)^{(p - 1)/2}\sqrt{\frac{k'^{p}}{l'}}\prod_{s = -(p - 1)/2}^{(p - 1)/2}\text{sc}\left(u + \frac{2sK}{p}\right) Replacing u by iu in the above equation and noting that \text{sc}(iu, k) = i\,\text{sn}(u, k') we get \begin{align}\text{sn}\left(\frac{u}{M}, l'\right) &= \sqrt{\frac{k'^{p}}{l'}}\prod_{s = -(p - 1)/2}^{(p - 1)/2}\text{sn}\left(u - \frac{2siK}{p}, k'\right)\notag\\ &= \sqrt{\frac{k'^{p}}{l'}}\,\text{sn}(u, k')\prod_{s = 1}^{(p - 1)/2}\text{sn}\left(u + \frac{2siK}{p}, k'\right)\,\text{sn}\left(u - \frac{2siK}{p}, k'\right)\notag\\ &= (-1)^{(p - 1)/2}\prod_{s = 1}^{(p - 1)/2}\text{sn}^{2}\left(\frac{2siK}{p}, k'\right)\,\text{sn}(u, k')\notag\\ &\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\prod_{s = 1}^{(p - 1)/2}\dfrac{1 - \dfrac{\text{sn}^{2}(u, k')}{\text{sn}^{2}\left(\dfrac{2siK}{p}, k'\right)}}{1 - k'^{2}\,\text{sn}^{2}(u, k')\,\text{sn}^{2}\left(\dfrac{2siK}{p}, k'\right)}\notag\end{align} The factor on the right side which is independent of u must be 1/M as can be easily seen when we divide both sides by \text{sn}(u, k') and take limits as u \to 0.

Thus we finally obtain \text{sn}\left(\frac{u}{M}, l'\right) = \frac{\text{sn}(u, k')}{M}\prod_{s = 1}^{(p - 1)/2}\dfrac{1 + \dfrac{\text{sn}^{2}(u, k')}{\text{sc}^{2}\left(\dfrac{2sK}{p}, k\right)}}{1 + k'^{2}\,\text{sn}^{2}(u, k')\,\text{sc}^{2}\left(\dfrac{2sK}{p}, k\right)} The only factor on the right side which can vanish is \text{sn}(u, k') and the smallest value for which this vanishes is u = 2K'. The left side vanishes when u/M = 2L' and therefore upon equating these two values of u we get K'/M = L'.

We have thus derived the two relations K/pM = L and K'/M = L' from which we obtain the fundamental relation L'/L = pK'/K. From this it also follows that the value of l occurring in these equations is actually less than k.

In the next post we will describe one more transformation which is also real and it leads to a value of l which is greater than k (which will be denoted by l_{1}) and in this case K'/K = pL'_{1}/L_{1}.

Print/PDF Version

0 comments :: Elementary Approach to Modular Equations: Jacobi's Transformation Theory 4

Post a Comment