Congruence Properties of Partitions: Part 2
Continuing our journey of partition congruences from the last post we now prove the congruences modulo $7$ and $11$.
By
Paramanand Singh
Friday, June 21, 2013
Congruence Properties of Partitions: Part 1
Introduction
We know that any positive integer greater than $1$ can be expressed as a product of prime numbers in a unique fashion ignoring the order of factors. This is one of the most basic results in number theory and is aptly called the fundamental theorem of arithmetic. This result also shows that prime numbers are the building blocks for all integers and this justifies the importance given to prime numbers in number theory.
By
Paramanand Singh
Thursday, June 20, 2013
Thoughts On Ramanujan
Of late I had been reading Ramanujan's Collected Papers and based on my understanding of it (and inputs from works of Borwein brothers, Bruce C. Berndt) I wrote a series of posts explaining some of Ramanujan's discoveries (see 10 posts starting from here and 4 posts beginning from here). While studying Ramanujan's Papers I could not help myself being astounded by the depth of his discoveries and the ingenuity of the proofs he provided for some of his results.
Reading Papers has not been an easy job for me and seems like an unending task if I wish to have a complete and thorough understanding of it. Hence I decided to take a break for sometime and dedicate one of my posts about my thoughts on Ramanujan, his works, abilities and methods. Needless to say whatever I present here would be a personal view and may differ from general perception a reader might have of Ramanujan and his works. Because of the same reason this post is bound to be of somewhat personal nature.
Reading Papers has not been an easy job for me and seems like an unending task if I wish to have a complete and thorough understanding of it. Hence I decided to take a break for sometime and dedicate one of my posts about my thoughts on Ramanujan, his works, abilities and methods. Needless to say whatever I present here would be a personal view and may differ from general perception a reader might have of Ramanujan and his works. Because of the same reason this post is bound to be of somewhat personal nature.
By
Paramanand Singh
Monday, June 17, 2013
Proof of Chudnovsky Series for 1/π(PI)
In 1988 D. V. Chudnovsky and G. V. Chudnovsky (now famous as "Chudnovsky Brothers") established a general series for $\pi$ by extending Ramanujan's ideas (presented in this series of posts). It can be however shown that their general series can be derived using Ramanujan's technique. Chudnovsky's approach has the advantage that using class field theory the algebraic nature of parameters in the general series can be determined and this greatly aids in the empirical evaluation of the parameters and thereby providing an actual series consisting of numbers.
By
Paramanand Singh
Sunday, June 2, 2013
Subscribe to:
Posts
(
Atom
)